Self-powered and self-sensing devices based on piezoelectric energy harvesting

被引:6
|
作者
Chen, Gantong [1 ]
Zhu, Yue [1 ]
Huang, Dongmei [2 ]
Zhou, Shengxi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
piezoelectric energy harvesting; self-powered; self-sensing; wearable devices; implantable devices; TRIBOELECTRIC NANOGENERATOR; MONITORING-SYSTEM; MECHANICAL ENERGY; BENDING STRENGTH; MOTION SENSOR; CARBON-BLACK; E-SKIN; PERFORMANCE; VIBRATION; HEALTH;
D O I
10.1007/s11431-023-2535-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wearable devices, interactive human-machine interface equipment, wireless sensors, and small-scale cleaning devices play crucial roles in biomedical implantation, disease treatment, health monitoring, environmental purification, etc. These devices require a sustainable energy source to work effectively. With the consideration of the global energy crisis and environmental pollution, researchers are exploring new, stable, and environmentally friendly methods to power these low-powered devices. Mechanical energy is one of the most abundant natural energy sources. Converting mechanical energy from the ambient environment or host structures into electrical energy via the direct piezoelectric effect is an efficient energy harvesting technique. This paper reviews the application of advanced piezoelectric materials, and small-scale self-powered and self-sensing piezoelectric devices at the cubic centimeter scale in energy harvesting and health monitoring of human, animal, machinery, roads, bridges, as well as the pollutant degradation of the environment. Some of these devices have the capability to not only harvest mechanical energy but also enable real-time monitoring and analysis of the electrical signals generated by the direct piezoelectric effect, facilitating prompt decision-making and appropriate responses. In addition, potential challenges and future prospects of small-scale self-powered and self-sensing piezoelectric devices are discussed.
引用
收藏
页码:1631 / 1667
页数:37
相关论文
共 50 条
  • [21] An Improved Self-Powered Switching Interface for Piezoelectric Energy Harvesting
    Liang, Junrui
    Liao, Wei-Hsin
    ICIA: 2009 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-3, 2009, : 924 - 929
  • [22] A Self-powered Extensible SECE Rectifier For Piezoelectric Energy Harvesting
    Qiu, Jiacong
    Liang, Junrui
    2022 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-HIMEJI 2022- ECCE ASIA), 2022, : 1 - 5
  • [23] A Self-powered Predictive Maintenance System Based on Piezoelectric Energy Harvesting and TinyML
    Chen, Zijie
    Gao, Yiming
    Liang, Junrui
    2023 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED, 2023,
  • [24] Variable damping energy regenerative damper for self-powered sensors and self-sensing devices in smart electric buses
    Abdelrahman, Mansour
    Fan, Chengliang
    Yi, Minyi
    Zhang, Zutao
    Ali, Asif
    Xia, Xiaofeng
    Mohamed, A. A.
    Mugheri, Shoukat Ali
    Ahmed, Ammar
    SMART MATERIALS AND STRUCTURES, 2024, 33 (10)
  • [25] Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection
    Han, Mengdi
    Yu, Bocheng
    Qiu, Guolin
    Chen, Haotian
    Su, Zongming
    Shi, Mayue
    Meng, Bo
    Cheng, Xiaoliang
    Zhang, Haixia
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (14) : 7382 - 7388
  • [26] Research on a self-powered rolling bearing fault diagnosis method with a piezoelectric generator for self-sensing
    Shi, Runye
    Yan, Zhengshun
    Fang, Shitong
    Qiao, Zijian
    Xiao, Shiyi
    Lei, Jiaoyu
    Wang, Zhouzhou
    Xu, Bin
    Lai, Zhihui
    APPLIED ENERGY, 2024, 376
  • [27] Energy Harvesting Electronics for Vibratory Devices in Self-Powered Sensors
    Chao, Paul C. -P.
    IEEE SENSORS JOURNAL, 2011, 11 (12) : 3106 - 3121
  • [28] Ferroelectric Nanomaterials for Energy Harvesting and Self-Powered Sensing Applications
    Yu, Xiang
    Ji, Yun
    Zhang, Kewei
    Shen, Xinyi
    Zhang, Shijian
    Xu, Mofei
    Le, Xiaoyun
    ADVANCED SENSOR RESEARCH, 2024, 3 (12):
  • [29] Design and analysis of a self-powered, self-sensing magnetorheological damper
    Chen, Chao
    Liao, Wei-Hsin
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2011, 2011, 7977
  • [30] Multifunctional Textile for Energy Harvesting and Self-Powered Sensing Applications
    Jao, Y. -T.
    Chang, T. -W.
    Lin, Z. -H.
    SOLID-STATE ELECTRONICS AND PHOTONICS IN BIOLOGY AND MEDICINE 4, 2017, 77 (07): : 47 - 50