Self-powered and self-sensing devices based on piezoelectric energy harvesting

被引:7
|
作者
Chen, Gantong [1 ]
Zhu, Yue [1 ]
Huang, Dongmei [2 ]
Zhou, Shengxi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
piezoelectric energy harvesting; self-powered; self-sensing; wearable devices; implantable devices; TRIBOELECTRIC NANOGENERATOR; MONITORING-SYSTEM; MECHANICAL ENERGY; BENDING STRENGTH; MOTION SENSOR; CARBON-BLACK; E-SKIN; PERFORMANCE; VIBRATION; HEALTH;
D O I
10.1007/s11431-023-2535-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wearable devices, interactive human-machine interface equipment, wireless sensors, and small-scale cleaning devices play crucial roles in biomedical implantation, disease treatment, health monitoring, environmental purification, etc. These devices require a sustainable energy source to work effectively. With the consideration of the global energy crisis and environmental pollution, researchers are exploring new, stable, and environmentally friendly methods to power these low-powered devices. Mechanical energy is one of the most abundant natural energy sources. Converting mechanical energy from the ambient environment or host structures into electrical energy via the direct piezoelectric effect is an efficient energy harvesting technique. This paper reviews the application of advanced piezoelectric materials, and small-scale self-powered and self-sensing piezoelectric devices at the cubic centimeter scale in energy harvesting and health monitoring of human, animal, machinery, roads, bridges, as well as the pollutant degradation of the environment. Some of these devices have the capability to not only harvest mechanical energy but also enable real-time monitoring and analysis of the electrical signals generated by the direct piezoelectric effect, facilitating prompt decision-making and appropriate responses. In addition, potential challenges and future prospects of small-scale self-powered and self-sensing piezoelectric devices are discussed.
引用
收藏
页码:1631 / 1667
页数:37
相关论文
共 50 条
  • [11] Energy Harvesting towards Self-Powered IoT Devices
    Elahi, Hassan
    Munir, Khushboo
    Eugeni, Marco
    Atek, Sofiane
    Gaudenzi, Paolo
    ENERGIES, 2020, 13 (21)
  • [12] Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices
    Zhou, Honglei
    Zhang, Yue
    Qiu, Ye
    Wu, Huaping
    Qin, Weiyang
    Liao, Yabin
    Yu, Qingmin
    Cheng, Huanyu
    BIOSENSORS & BIOELECTRONICS, 2020, 168 (168)
  • [13] Environmental energy harvesting boosts self-powered sensing
    Luo, Hongchun
    Yang, Tao
    Jing, Xingjian
    Cui, Yingxuan
    Qin, Weiyang
    MATERIALS TODAY ENERGY, 2024, 40
  • [14] Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor
    Ng, TH
    Liao, WH
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (10) : 785 - 797
  • [15] A Self-powered Extensible SECE Rectifier For Piezoelectric Energy Harvesting
    Qiu, Jiacong
    Liang, Junrui
    2022 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-HIMEJI 2022- ECCE ASIA), 2022, : 1 - 5
  • [16] Analysis and optimization of self-powered parallel synchronized switch harvesting on inductor circuit for piezoelectric energy harvesting
    Zhang, Bin
    Liu, Hongsheng
    Hu, Bingxin
    Zhou, Shengxi
    SMART MATERIALS AND STRUCTURES, 2022, 31 (09)
  • [17] Self-powered and self-sensing water meter using contact-separation triboelectric nanogenerator with harvesting local head loss
    Cao, Da-Qi
    Liu, Xiao-Dan
    Fang, Rong-Kun
    Yihuo, Guri
    Wu, Yun-Feng
    Huang, Zhan-Gao
    Zhang, Wen-Yu
    Chen, Xiangyu
    Hao, Xiao-Di
    JOURNAL OF WATER PROCESS ENGINEERING, 2025, 72
  • [18] Research on a self-powered rolling bearing fault diagnosis method with a piezoelectric generator for self-sensing
    Shi, Runye
    Yan, Zhengshun
    Fang, Shitong
    Qiao, Zijian
    Xiao, Shiyi
    Lei, Jiaoyu
    Wang, Zhouzhou
    Xu, Bin
    Lai, Zhihui
    APPLIED ENERGY, 2024, 376
  • [19] Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting
    Ammar, Meriam Ben
    Sahnoun, Salwa
    Fakhfakh, Ahmed
    Viehweger, Christian
    Kanoun, Olfa
    SENSORS, 2023, 23 (04)
  • [20] Energy Harvesting Electronics for Vibratory Devices in Self-Powered Sensors
    Chao, Paul C. -P.
    IEEE SENSORS JOURNAL, 2011, 11 (12) : 3106 - 3121