Self-powered and self-sensing devices based on piezoelectric energy harvesting

被引:6
|
作者
Chen, Gantong [1 ]
Zhu, Yue [1 ]
Huang, Dongmei [2 ]
Zhou, Shengxi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
piezoelectric energy harvesting; self-powered; self-sensing; wearable devices; implantable devices; TRIBOELECTRIC NANOGENERATOR; MONITORING-SYSTEM; MECHANICAL ENERGY; BENDING STRENGTH; MOTION SENSOR; CARBON-BLACK; E-SKIN; PERFORMANCE; VIBRATION; HEALTH;
D O I
10.1007/s11431-023-2535-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wearable devices, interactive human-machine interface equipment, wireless sensors, and small-scale cleaning devices play crucial roles in biomedical implantation, disease treatment, health monitoring, environmental purification, etc. These devices require a sustainable energy source to work effectively. With the consideration of the global energy crisis and environmental pollution, researchers are exploring new, stable, and environmentally friendly methods to power these low-powered devices. Mechanical energy is one of the most abundant natural energy sources. Converting mechanical energy from the ambient environment or host structures into electrical energy via the direct piezoelectric effect is an efficient energy harvesting technique. This paper reviews the application of advanced piezoelectric materials, and small-scale self-powered and self-sensing piezoelectric devices at the cubic centimeter scale in energy harvesting and health monitoring of human, animal, machinery, roads, bridges, as well as the pollutant degradation of the environment. Some of these devices have the capability to not only harvest mechanical energy but also enable real-time monitoring and analysis of the electrical signals generated by the direct piezoelectric effect, facilitating prompt decision-making and appropriate responses. In addition, potential challenges and future prospects of small-scale self-powered and self-sensing piezoelectric devices are discussed.
引用
收藏
页码:1631 / 1667
页数:37
相关论文
共 50 条
  • [1] Self-powered and self-sensing devices based on piezoelectric energy harvesting
    CHEN GanTong
    ZHU Yue
    HUANG DongMei
    ZHOU ShengXi
    Science China(Technological Sciences), 2024, 67 (06) : 1631 - 1667
  • [2] Self-powered and self-sensing devices based on human motion
    Lai, Zhihui
    Xu, Junchen
    Bowen, Chris R.
    Zhou, Shengxi
    JOULE, 2022, 6 (07) : 1501 - 1565
  • [3] A self-powered and self-sensing wave energy harvesting system for the sea-crossing bridge
    Zhou, Jianhong
    Tang, Hongjie
    Zeng, Lei
    Zhang, Zutao
    Zhao, Jie
    Li, Ang
    Kong, Lingji
    Tang, Minfeng
    Hu, Yongli
    MATERIALS TODAY NANO, 2024, 27
  • [4] Self-powered sensing of power transmission lines galloping based on piezoelectric energy harvesting
    Gao, Sihang
    Zeng, Xisong
    Tao, Bo
    Ke, Tingjing
    Feng, Shaoxuan
    Chen, Yiduo
    Zhou, Jie
    Lan, Wenyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 144
  • [5] A self-powered and self-sensing knee negative energy harvester
    Hao, Daning
    Li, Yingjie
    Wu, Jiaoyi
    Zeng, Lei
    Zhang, Zutao
    Chen, Hongyu
    Liu, Weizhen
    ISCIENCE, 2024, 27 (03)
  • [6] A Self-Sensing and Self-Powered Wearable System Based on Multi-Source Human Motion Energy Harvesting
    Hao, Daning
    Gong, Yuchen
    Wu, Jiaoyi
    Shen, Qianhui
    Zhang, Zutao
    Zhi, Jinyi
    Zou, Rui
    Kong, Weihua
    Kong, Lingji
    SMALL, 2024, 20 (28)
  • [7] Self-powered and self-sensing wearable devices from a comfort perspective
    Zou, Rui
    Chen, Hongyu
    Pan, Hongye
    Zhang, Hexiang
    Kong, Lingji
    Zhang, Zutao
    Xiang, Zerui
    Zhi, Jinyi
    Xu, Yongsheng
    DEVICE, 2024, 2 (11):
  • [8] Rotational energy harvesting for self-powered sensing
    Fu, Hailing
    Mei, Xutao
    Yurchenko, Daniil
    Zhou, Shengxi
    Theodossiades, Stephanos
    Nakano, Kimihiko
    Yeatman, Eric M.
    JOULE, 2021, 5 (05) : 1074 - 1118
  • [9] A coplanar electrode operating mode for piezoelectric energy harvesting and self-powered sensing
    Hao, Jian
    Liu, Ping
    Gao, Guanglong
    Gao, Qingguo
    Yang, Jianjun
    Liu, Liming
    APPLIED PHYSICS LETTERS, 2025, 126 (08)
  • [10] A self-powered and self-sensing human kinetic energy harvesting system for application in wireless smart headphones
    Zong, Ruisi
    Gao, Yanyan
    Feng, Jinyan
    Li, Yubao
    Qi, Lingfei
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2025, 43