共 28 条
- [1] Muharemi F., Logofatu D., Leon F., Machine learning approaches for anomaly detection of water quality on a real-world data set, Journal of Information and Telecommunication, 3, 3, pp. 294-307, (2019)
- [2] Jansi Rani S.V., Ramakrishnan A.M., Rishivardhan K., Improving water quality assessment through anomaly detection using hybrid convolutional neural network approach, Global NEST Journal, 24, 1, pp. 1-8, (2022)
- [3] Leigh C., Alsibai O., Hyndman R.J., Kandanaarachchi S., King O.C., McGree J.M., Neelamraju C., Strauss J., Talagala P.D., Turner R.D., Mengersen K., Peterson E.E., A framework for automated anomaly detection in high frequency water-quality data from in situ sensors, Science of the Total Environment, 664, pp. 885-898, (2019)
- [4] Yang Z., Liu Y., Hou D., Feng T., Wei Y., Zhang J., Huang P., Zhang G., Water quality event detection based on Multivariate empirical mode decomposition, In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2663-2668, (2014)
- [5] Candelieri A., Clustering and support vector regression for water demand forecasting and anomaly detection, Water, 9, 3, (2017)
- [6] Fehst V., La H.C., Nghiem T.D., Mayer B.E., Englert P., Fiebig K.H., Automatic vs. Manual feature engineering for anomaly detection of drinking-water quality, Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 5-6, (2018)
- [7] Raciti M., Cucurull J., Nadjm-Tehrani S., Anomaly detection in water management systems, Critical infrastructure protection, pp. 98-119, (2012)
- [8] Hill D.J., Minsker B.S., Anomaly detection in streaming environmental sensor data: A data-driven modeling approach, Environmental Modelling & Software, 25, 9, pp. 1014-1022, (2010)
- [9] Eggimann S., Mutzner L., Wani O., Schneider M.Y., Spuhler D., Moy de Vitry M., Beutler P., Maurer M., The potential of knowing more: A review of data-driven urban water management, Environmental Science & Technology, 51, 5, pp. 2538-2553, (2017)
- [10] Chen X., Feng F., Wu J., Liu W., Anomaly detection for drinking water quality via deep biLSTM ensemble, Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 3-4, (2018)