Cube query interestingness: Novelty, relevance, peculiarity and surprise

被引:0
作者
Gkitsakis, Dimos [1 ]
Kaloudis, Spyridon [1 ]
Mouselli, Eirini [2 ]
Peralta, Veronika [3 ]
Marcel, Patrick [4 ]
Vassiliadis, Panos [1 ]
机构
[1] Univ Ioannina, Ioannina, Greece
[2] Natech SA, Ioannina, Greece
[3] Univ Tours, Blois, France
[4] Univ Orleans, Orleans, France
关键词
Interestingness; Data cubes; Business intelligence; Novelty; Surprise; Relevance; Peculiarity; User study; SIMILARITY MEASURES; OLAP; EXPLORATION; PSYCHOLOGY; DISCOVERY; ANALYTICS; CURIOSITY;
D O I
10.1016/j.is.2024.102381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss methods to assess the interestingness of a query in an environment of data cubes. We assume a hierarchical multidimensional database, storing data cubes and level hierarchies. We start with a comprehensive review of related work in the fields of human behavior studies and computer science. We define the interestingness of a query as a vector of scores along different aspects, like novelty, relevance, surprise and peculiarity and complement this definition with a taxonomy of the information that can be used to assess each of these aspects of interestingness. We provide both syntactic (result-independent) and extensional (result-dependent) checks, measures and algorithms for assessing the different aspects of interestingness in a quantitative fashion. We also report our findings from a user study that we conducted, analyzing the significance of each aspect, its evolution over time and the behavior of the study's participants.
引用
收藏
页数:29
相关论文
共 59 条
[1]   DIFF: a relational interface for large-scale data explanation [J].
Abuzaid, Firas ;
Kraft, Peter ;
Suri, Sahaana ;
Gan, Edward ;
Xu, Eric ;
Shenoy, Atul ;
Ananthanarayan, Asvin ;
Sheu, John ;
Meijer, Erik ;
Wu, Xi ;
Naughton, Jeff ;
Bailis, Peter ;
Zaharia, Matei .
VLDB JOURNAL, 2021, 30 (01) :45-70
[2]  
Aggarwal C. C., 2015, Data Mining: The Textbook, DOI DOI 10.1007/978-3-319-14142-8
[3]   A collaborative filtering approach for recommending OLAP sessions [J].
Aligon, Julien ;
Gallinucci, Enrico ;
Golfarelli, Matteo ;
Marcel, Patrick ;
Rizzi, Stefano .
DECISION SUPPORT SYSTEMS, 2015, 69 :20-30
[4]   Similarity measures for OLAP sessions [J].
Aligon, Julien ;
Golfarelli, Matteo ;
Marcel, Patrick ;
Rizzi, Stefano ;
Turricchia, Elisa .
KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 39 (02) :463-489
[5]  
Baikousi E, 2011, PROC INT CONF DATA, P171, DOI 10.1109/ICDE.2011.5767869
[6]   Automatically Generating Data Exploration Sessions Using Deep Reinforcement Learning [J].
Bar El, Ori ;
Milo, Tova ;
Somech, Amit .
SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, :1527-1537
[7]   A THEORY OF HUMAN CURIOSITY [J].
Berlyne, D. E. .
BRITISH JOURNAL OF PSYCHOLOGY, 1954, 45 :180-191
[8]  
Chanson A., 2019, P DOLAP
[9]  
Chanson Alexandre, 2022, EDBT
[10]  
De Bie T., 2011, SIGKDD 2011, P564, DOI [DOI 10.1145/2020408.2020497, 10.1145/2020408.2020497]