A PLANAR SCHRODINGER-POISSON SYSTEM WITH VANISHING POTENTIALS AND EXPONENTIAL CRITICAL GROWTH

被引:0
|
作者
Albuquerque, Francisco S. B. [1 ]
Carvalho, Jonison L. [2 ]
Furtado, Marcelo F. [3 ]
Medeiros, Everaldo S. [2 ]
机构
[1] Univ Estadual Paraiba, Dept Matemat, BR-58700070 Campina Grande, PB, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Non-autonomous Schrodinger-Poisson system; unbounded potential; decaying potential; exponential critical growth; Trudinger-Moser inequality; GROUND-STATE SOLUTIONS; SOLITARY WAVES; EQUATIONS; MAXWELL; EXISTENCE;
D O I
10.12775/TMNA.2022.058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we look for ground state solutions of the elliptic system {-Delta u + V (x)u + gamma phi K(x)u = Q(x)f (u); x is an element of R-2; Delta phi = K(x)u(2); x is an element of R-2, where gamma > 0 and the continuous potentials V, K, Q satisfy some mild growth conditions and the nonlinearity f has exponential critical growth. The key point of our approach is a new version of the Trudinger-Moser inequality for weighted Sobolev space.
引用
收藏
页码:159 / 180
页数:22
相关论文
共 50 条
  • [1] Fractional Schrodinger-Poisson system with critical growth and potentials vanishing at infinity
    Zhang, Xinrui
    He, Xiaoming
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 2167 - 2191
  • [2] ON THE PLANAR SCHRODINGER-POISSON SYSTEM WITH ZERO MASS AND CRITICAL EXPONENTIAL GROWTH
    Chen, Sitong
    Tang, Xianhua
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2020, 25 (11-12) : 687 - 708
  • [3] Planar Schrodinger-Poisson system with critical exponential growth in the zero mass case
    Chen, Sitong
    Shu, Muhua
    Tang, Xianhua
    Wen, Lixi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 327 : 448 - 480
  • [4] Multiple normalized solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)
  • [5] Axially symmetric solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9144 - 9174
  • [6] Saddle solutions for the planar Schrodinger-Poisson system with exponential growth
    Shan, Liying
    Shuai, Wei
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [7] On a planar non-autonomous Schrodinger-Poisson system involving exponential critical growth
    Albuquerque, F. S.
    Carvalho, J. L.
    Figueiredo, G. M.
    Medeiros, E.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [8] Ground state solutions for a class of fractional Schrodinger-Poisson system with critical growth and vanishing potentials
    Meng, Yuxi
    Zhang, Xinrui
    He, Xiaoming
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 1328 - 1355
  • [9] Existence of positive solution for a planar Schrodinger-Poisson system with exponential growth
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [10] Ground states for critical fractional Schrodinger-Poisson systems with vanishing potentials
    Dou, Xilin
    He, Xiaoming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9089 - 9110