Nonlinear spin dynamics of a ferromagnetic ring in the vortex state and its application as a spin-transfer nano-oscillator

被引:0
作者
Uzunova, Vera [1 ,2 ]
Ivanov, Boris A. [3 ,4 ]
机构
[1] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[2] Natl Acad Sci Ukraine, Inst Phys, 46 Nauky Ave, UA-03680 Kiev, Ukraine
[3] Natl Acad Sci Ukraine, Inst Magnetism, UA-03142 Kiev, Ukraine
[4] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词
DRIVEN; MAGNETIZATION; GENERATION; SOLITONS;
D O I
10.1103/PhysRevB.108.064423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a nonlinear spin dynamics of a ferromagnetic ring in a vortex state induced by the spin -polarized current. We also suggest using the ferromagnetic ring as a free layer of a coreless vortex spin -transfer nanooscillator. The calculated working frequency is about several GHz, which is much higher than the gyromode frequency of the disk -based vortex oscillator. The response of the vortex -state ring to the spin -polarized current has hysteretic behavior with the reasonable values of the thresholds' current densities: ignition threshold is about 10 8 A cm - 2 and elimination current to maintain the oscillations has much lower values of about 10 6 A cm - 2 . The output signal can be extracted with the help of the inverse spin -Hall effect or by the giant magnetoresistance. The output electromotive force averaged over all sample vanishes and we suggest using a ferromagnetic ring or disk in a vortex state as a giant magnetoresistance analyzer. For an inverse spin -Hall analyzer we advise using two heavy metals with different signs of spin -Hall angle. The ring -based spin -transfer nano -oscillator (STNO) is supposed to increase the areas of practical application of the STNOs.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Magnetic vortex dynamics [J].
Antos, Roman ;
Otani, YoshiChika ;
Shibata, Junya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (03)
[2]   Spintronics [J].
Bader, S. D. ;
Parkin, S. S. P. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :71-88
[3]  
Barone A., 1982, PHYS APPL JOSEPHSON
[4]   Dynamics of a vortex domain wall in a magnetic nanostrip: Application of the collective-coordinate approach [J].
Clarke, D. J. ;
Tretiakov, O. A. ;
Chern, G. -W. ;
Bazaliy, Ya. B. ;
Tchernyshyov, O. .
PHYSICAL REVIEW B, 2008, 78 (13)
[5]   Nanocontact spin-transfer oscillators based on perpendicular anisotropy in the free layer [J].
Consolo, G. ;
Lopez-Diaz, L. ;
Torres, L. ;
Finocchio, G. ;
Romeo, A. ;
Azzerboni, B. .
APPLIED PHYSICS LETTERS, 2007, 91 (16)
[6]   Nanoconstriction-based spin-Hall nano-oscillator [J].
Demidov, V. E. ;
Urazhdin, S. ;
Zholud, A. ;
Sadovnikov, A. V. ;
Demokritov, S. O. .
APPLIED PHYSICS LETTERS, 2014, 105 (17)
[7]  
Demidov VE, 2012, NAT MATER, V11, P1028, DOI [10.1038/NMAT3459, 10.1038/nmat3459]
[8]   Nonlinear oscillations of magnetization for ferromagnetic particles in the vortex state and their ordered arrays [J].
Galkin, A. Yu. ;
Ivanov, B. A. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 109 (01) :74-89
[9]   Spin torque and critical currents for magnetic vortex nano-oscillator in nanopillars [J].
Guslienko, K. Y. ;
Aranda, G. R. ;
Gonzalez, J. .
INTERNATIONAL CONFERENCE ON TRENDS IN SPINTRONICS AND NANOMAGNETISM (TSN 2010), 2011, 292
[10]  
Guslienko KY, 2008, J NANOSCI NANOTECHNO, V8, P2745, DOI 10.1166/jnn.2008.003