Data assimilation for phase-field simulations of the formation of eutectic alloy microstructures

被引:1
|
作者
Seguchi, Yusuke [1 ]
Okugawa, Masayuki [1 ]
Zhu, Chuanqi [1 ]
Yamanaka, Akinori [2 ]
Koziumi, Yuichiro [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Tokyo Univ Agr & Technol, Dept Mech Syst Engn, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
基金
日本科学技术振兴机构;
关键词
Eutectic alloy; Phase-field method; One-directional solidification; Data assimilation; Ensemble Kalman filter; IN-SITU MEASUREMENTS; RAPID SOLIDIFICATION; GROWTH; MECHANISM; SYSTEM; MODEL;
D O I
10.1016/j.commatsci.2024.112910
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase-field (PF) method can effectively predict the formation of microstructures of eutectic alloys. However, numerous simulation parameters must be determined correctly for each alloy system to reproduce the experimentally observed microstructures. In this study, we present a data assimilation method based on an ensemble Kalman filter to determine PF simulation parameters for the directional solidification of eutectic alloy by optimizing the conditions for data assimilation. Numerical twin experiments revealed that eutectic microstructures can be reproduced, although four PF simulation parameters remained unknown. We also investigated appropriate experimental observation conditions for estimating the simulation parameters and found that the sufficient frequency of observations can be determined from the solid-liquid interfacial velocity. Our results provide guidance for data assimilation combined with the PF simulations of eutectic alloys. Moreover, our study provides a deeper understanding of the formation mechanisms of various types of eutectic microstructures.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Phase-field modeling of eutectic Ti-Fe alloy solidification
    Kundin, J.
    Kumar, R.
    Schlieter, A.
    Choudhary, M. A.
    Gemming, T.
    Kuehn, U.
    Eckert, J.
    Emmerich, H.
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 63 : 319 - 328
  • [12] Large-scale phase-field simulations of ternary eutectic microstructure evolution
    Steinmetz, Philipp
    Hoetzer, Johannes
    Kellner, Michael
    Dennstedt, Anne
    Nestler, Britta
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 117 : 205 - 214
  • [13] Phase-field simulations of α → γ precipitations and transition to massive transformation in the Ti-Al alloy
    Singer, H. M.
    Singer, I.
    Jacot, A.
    ACTA MATERIALIA, 2009, 57 (01) : 116 - 124
  • [14] Investigation into microsegregation during solidification of a binary alloy by phase-field simulations
    Li, Junjie
    Wang, Jincheng
    Yang, Gencang
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (04) : 1217 - 1222
  • [15] Phase-Field Simulation of the Microstructure Evolution in the Eutectic Alloy NiAl-31Cr-3Mo
    Kellner, Michael
    Schulz, Camelia
    Kauffmann, Alexander
    Heilmaier, Martin
    Nestler, Britta
    CRYSTALS, 2023, 13 (07)
  • [16] Thermal diffusion coupled quantitative phase-field simulations with large undercooling
    Bhattacharya, Avisor
    Mondal, Kallol
    Upadhyay, C. S.
    Sangal, Sandeep
    MECHANICS OF MATERIALS, 2022, 170
  • [17] Phase-Field Simulations of the Morphology Formation in Evaporating Crystalline Multicomponent Films
    Ronsin, Olivierj J.
    Harting, Jens
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (10)
  • [18] Influence of the Phase Fractions on the Formation of Eutectic Colonies: A Large-Scale Phase-Field Study
    Kellner, Michael
    Hierl, Henrik
    Nestler, Britta
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (17)
  • [19] Phase-Field Simulations of Crystal Growth
    Plapp, Mathis
    SELECTED TOPICS ON CRYSTAL GROWTH, 2010, 1270 : 247 - 254
  • [20] Data assimilation with phase-field lattice Boltzmann method for dendrite growth with liquid flow and solid motion
    Yamamura, Ayano
    Sakane, Shinji
    Ohno, Munekazu
    Yasuda, Hideyuki
    Takaki, Tomohiro
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 215