EVALUATING CONVNET AND TRANSFORMER BASED SELF-SUPERVISED ALGORITHMS FOR BUILDING ROOF FORM CLASSIFICATION

被引:0
作者
Mutreja, G. [1 ]
Bittner, K. [1 ]
机构
[1] German Aerosp Ctr DLR, Remote Sensing Technol Inst, Wessling, Germany
来源
GEOSPATIAL WEEK 2023, VOL. 48-1 | 2023年
关键词
Roof-form classification; Self-supervised learning; SimCLR; MoCo; ConvNets; Vision transformers; BYOL; BEiT;
D O I
10.5194/isprs-archives-XLVIII-1-W2-2023-315-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
This research paper presents a comprehensive evaluation of various self-supervised learning models for building roof type classification. We conduct linear evaluation experiments for the models pretrained on both the ImageNet1K dataset and a custom building roof type dataset to assess the models' performance for the roof type classification task. The results demonstrate the effectiveness of the ViT-based BEiTV2 model, which outperforms other models on both datasets, achieving an accuracy of 96.8% from the model pretrained on ImageNet1K dataset and 92.67% on the model pretrained on building roof type dataset. The class activation maps further validate the strong performance of MoCoV3, BarlowTwins, and DenseCL models. These findings emphasize the potential of self-supervised learning for accurate building roof type classification, with the ViT-based BEiTV2 model showcasing state-of-the-art results.
引用
收藏
页码:315 / 321
页数:7
相关论文
共 26 条
[1]  
Alidoost Fatemeh A. H., 2018, Journal of Photogrammetry, Remote Sensing and Geoinformation Science
[2]  
Bao Hangbo, 2021, ARXIV
[3]  
Ben Saad Ahmed, 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, P4960, DOI 10.1109/IGARSS47720.2021.9553778
[4]  
Buyukdemircioglu M., 2021, INT ARCH PHOTOGRAMM, P55, DOI DOI 10.5194/ISPRS-ARCHIVES-XLIII-B3-2021-55-2021
[5]  
Caron M, 2020, ADV NEUR IN, V33
[6]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[7]  
Chen T., 2020, PR MACH LEARN RES
[8]   An Empirical Study of Training Self-Supervised Vision Transformers [J].
Chen, Xinlei ;
Xie, Saining ;
He, Kaiming .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9620-9629
[9]  
Chen Xinlei, 2020, AUTOPHAGY, DOI DOI 10.1080/15548627.2020.1810918
[10]  
Dosovitskiy A., 2021, INT C LEARN REPR, DOI [DOI 10.48550/ARXIV.2010.11929, 10 . 48550 / ARXIV . 2010 . 11929]