A hyperbolic Kac-Moody Calogero model

被引:0
|
作者
Lechtenfeld, Olaf [1 ,2 ]
Zagier, Don [3 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[2] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany
[3] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 06期
关键词
Differential and Algebraic Geometry; Scale and Conformal Symmetries; Integrable Field Theories; Discrete Symmetries; MANY-BODY PROBLEM; LIE-ALGEBRA;
D O I
10.1007/JHEP06(2024)093
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A new kind of quantum Calogero model is proposed, based on a hyperbolic Kac-Moody algebra. We formulate nonrelativistic quantum mechanics on the Minkowskian root space of the simplest rank-3 hyperbolic Lie algebra AE(3) with an inverse-square potential given by its real roots and reduce it to the unit future hyperboloid. By stereographic projection this defines a quantum mechanics on the Poincare disk with a unique potential. Since the Weyl group of AE(3) is a Z(2) extension of the modular group PSL(2,Z), the model is naturally formulated on the complex upper half plane, and its potential is a real modular function. We present and illustrate the relevant features of AE(3), give some approximations to the potential and rewrite it as an (almost everywhere convergent) Poincare series. The standard Dunkl operators are constructed and investigated on Minkowski space and on the hyperboloid. In the former case we find that their commutativity is obstructed by rank-2 subgroups of hyperbolic type (the simplest one given by the Fibonacci sequence), casting doubt on the integrability of the model. An appendix with Don Zagier investigates the computability of the potential. We foresee applications to cosmological billards and to quantum chaos.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Hyperbolic Kac-Moody superalgebras
    Frappat, L
    Sciarrino, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
  • [2] Hyperbolic subalgebras of hyperbolic Kac-Moody algebras
    Felikson, Anna
    Tumarkin, Pavel
    TRANSFORMATION GROUPS, 2012, 17 (01) : 87 - 122
  • [3] HYPERBOLIC STRINGS AND KAC-MOODY ALGEBRAS
    POPOV, AD
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1990, 52 (04): : 761 - 768
  • [4] REPRESENTATIONS OF HYPERBOLIC KAC-MOODY ALGEBRAS
    FEINGOLD, AJ
    FRENKEL, IB
    RIES, JFX
    JOURNAL OF ALGEBRA, 1993, 156 (02) : 433 - 453
  • [5] Dynkin diagrams of hyperbolic Kac-Moody superalgebras
    Tripathy, LK
    Das, B
    Pati, KC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08): : 2087 - 2097
  • [6] A HYPERBOLIC KAC-MOODY ALGEBRA FROM SUPERGRAVITY
    NICOLAI, H
    PHYSICS LETTERS B, 1992, 276 (03) : 333 - 340
  • [7] SUPER HYPERBOLIC TYPE KAC-MOODY LIEALGEBRA
    CHEN Hongji(Department of Mathematics
    SystemsScienceandMathematicalSciences, 1997, (04) : 329 - 332
  • [8] Multistring vertices and hyperbolic Kac-Moody algebras
    Gebert, RW
    Nicolai, H
    West, PC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (03): : 429 - 514
  • [9] DYNKIN DIAGRAMS FOR HYPERBOLIC KAC-MOODY ALGEBRAS
    SACLIOGLU, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : 3753 - 3769