On trivial gradient hyperbolic Ricci and gradient hyperbolic Yamabe solitons

被引:4
作者
Blaga, Adara M. [1 ]
机构
[1] West Univ Timisoara, Dept Math, Fac Math & Comp Sci, V Parvan 4, Timisoara 300223, Romania
关键词
Hyperbolic Ricci soliton; Hyperbolic Yamabe soliton; Gradient vector field; Scalar curvature;
D O I
10.1007/s00022-024-00725-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide conditions for a compact gradient hyperbolic Ricciand a compact gradient hyperbolic Yamabe soliton to be trivial, hence,the manifold to be an Einstein manifold in the first case, and a manifold of constant scalar curvature, in the second case. In particular, we provethat for a compact gradient hyperbolic Yamabe soliton of dimension>2,if the second Lie derivative of the metric in the direction of the potential vector field is trace-free and divergence-free, then the above conclusion is reached
引用
收藏
页数:8
相关论文
共 8 条
[1]   Killing and 2-Killing Vector Fields on Doubly Warped Products [J].
Blaga, Adara M. ;
Ozgur, Cihan .
MATHEMATICS, 2023, 11 (24)
[2]  
Blaga AM, 2025, Arxiv, DOI [arXiv:2310.15814, arXiv:2310.15814, 10.48550/arXiv.2310.15814, DOI 10.48550/ARXIV.2310.15814]
[3]   OnWarped Product Gradient η-Ricci Solitons [J].
Blaga, Adara M. .
FILOMAT, 2017, 31 (18) :5791-5801
[4]  
Chow B., 2006, GRADUATE STUDIES MAT, V77
[5]  
Dai WR, 2010, PURE APPL MATH Q, V6, P331
[6]   Three Dimensional Homogeneous Hyperbolic Ricci Solitons [J].
Faraji, Hamed ;
Azami, Shahroud ;
Fasihi-Ramandi, Ghodratallah .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (01) :135-155
[7]   Wave character of metrics and hyperbolic geometric flow [J].
Kong, De-Xing ;
Liu, Kefeng .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)
[8]  
Shu FW, 2007, Arxiv, DOI [arXiv:gr-qc/0610030, 10.48550/arXiv.gr-qc/0610030, DOI 10.48550/ARXIV.GR-QC/0610030]