Automatic detection of breast nodule in the ultrasound images using CNN

被引:0
作者
Hao P. [1 ,2 ]
Yunyun B. [3 ]
Cong W. [1 ,2 ]
Hui X. [4 ]
机构
[1] School of Software, Beijing University of Posts and Telecommunications, Beijing
[2] Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education, Beijing
[3] Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University
来源
Journal of China Universities of Posts and Telecommunications | 2019年 / 26卷 / 02期
关键词
Breast nodule; Convolutional neural network; Object detection; Ultrasound;
D O I
10.19682/j.cnki.1005-8885.2019.1002
中图分类号
学科分类号
摘要
Breast cancer is the most common cancer among women worldwide. Ultrasound is widely used as a harmless test for early breast cancer screening. The ultrasound network (USNet) model is presented. It is an improved object detection model specifically for breast nodule detection on ultrasound images. USNet improved the backbone network, optimized the generation of feature maps, and adjusted the loss function. Finally, USNet trained with real clinical data. The evaluation results show that the trained model has strong nodule detection ability. The mean average precision (mAP) value can reach 0. 734 9. The nodule detection rate is 95. 11%, and the in situ cancer detection rate is 79. 65% . At the same time, detection speed can reach 27. 3 frame per second (FPS), and the video data can be processed in real time. © 2019, Beijing University of Posts and Telecommunications. All rights reserved.
引用
收藏
页码:9 / 16
页数:7
相关论文
共 50 条
[21]   Automatic detection of deteriorated photovoltaic modules using IRT images and deep learning (CNN, LSTM) strategies [J].
Bakar, Hale ;
Kuzhippallil, Francis A. ;
Merabet, Adel .
ENGINEERING FAILURE ANALYSIS, 2023, 146
[22]   Thyroid-DETR: Thyroid nodule detection model with transformer in ultrasound images [J].
Zhou, Yu-Tong ;
Yang, Tian-Yu ;
Han, Xue-Hua ;
Piao, Jin-Chun .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 98
[23]   AUTOMATIC DETECTION OF LOCAL FETAL BRAIN STRUCTURES IN ULTRASOUND IMAGES [J].
Yaqub, M. ;
Napolitano, R. ;
Ioannou, C. ;
Papageorghiou, A. T. ;
Noble, J. A. .
2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, :1555-1558
[24]   Automatic 3D lesion segmentation on breast ultrasound images [J].
Kuo, Hsien-Chi ;
Giger, Maryellen L. ;
Reiser, Ingrid ;
Drukker, Karen ;
Edwards, Alexandra ;
Sennett, Charlene A. .
MEDICAL IMAGING 2013: COMPUTER-AIDED DIAGNOSIS, 2013, 8670
[25]   Insights Into YOLOv9-Based Breast Mass Detection Using Ultrasound Images [J].
Erragzi, Nouhaila ;
Moussaid, Abdelghani ;
Zrira, Nabila ;
Benmiloud, Ibtissam ;
Sebihi, Rajaa ;
Ngote, Nabil .
2024 IEEE THIRTEENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS, IPTA 2024, 2024,
[26]   DeepBreastCancerNet: A Novel Deep Learning Model for Breast Cancer Detection Using Ultrasound Images [J].
Raza, Asaf ;
Ullah, Naeem ;
Khan, Javed Ali ;
Assam, Muhammad ;
Guzzo, Antonella ;
Aljuaid, Hanan .
APPLIED SCIENCES-BASEL, 2023, 13 (04)
[27]   Feasibility Study of Lesion Detection Using Deformable Part Models in Breast Ultrasound Images [J].
Pons, Gerard ;
Marti, Robert ;
Ganau, Sergi ;
Sentis, Melcior ;
Marti, Joan .
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 :269-276
[28]   Lesion Detection in Breast Ultrasound Images Using a Machine Learning Approach and Genetic Optimization [J].
Torres, Fabian ;
Escalante-Ramirez, Boris ;
Olveres, Jimena ;
Yen, Ping-Lang .
PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 :289-301
[29]   Detection of Breast Cancer From Whole Slide Histopathological Images Using Deep Multiple Instance CNN [J].
Das, Kausik ;
Conjeti, Sailesh ;
Chatterjee, Jyotirmoy ;
Sheet, Debdoot .
IEEE ACCESS, 2020, 8 :213502-213511
[30]   Automatic Hypernasality Detection in Cleft Palate Speech Using CNN [J].
Wang, Xiyue ;
Tang, Ming ;
Yang, Sen ;
Yin, Heng ;
Huang, Hua ;
He, Ling .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (08) :3521-3547