Brain tumor MRI images identification and classification based on the recurrent convolutional neural network

被引:1
|
作者
Vankdothu R. [1 ]
Hameed M.A. [2 ]
机构
[1] Computer Science & Engineering at Osmania University Hyderabad, India
[2] Department of Computer Science & Engineering University College of Engineering (A). Osmania University Hyderabad, India
来源
Measurement: Sensors | 2022年 / 24卷
关键词
Deep neural networks; Image classification; Magnetic resonance imaging (MRI); Medical imaging; Recurrent convolutional neural networks;
D O I
10.1016/j.measen.2022.100412
中图分类号
学科分类号
摘要
Brain tumor detection and analysis are necessary for any indicative system and have testified that exhaustive research and procedural development over time. This work needs to implement an effective automated system to improve the accuracy of tumor detection. Various segmentation algorithms have been developed to achieve and enhance the accuracy of brain tumor classification. Brain image segmentation has been recognized as a complex and challenging area in medical image processing. This paper proposes a novel automated scheme for detection and classification. The proposed method is divided into various categories: MRI image preprocessing, image segmentation, feature extraction, and image classification. The image preprocessing step is performed using an adaptive filter to remove the noise of the MRI image. Image segmentation is performed using the improved K-means clustering (IKMC) algorithm, and the gray level co-occurrence matrix (GLCM) is used for feature extraction to extract features. After extracting features from MRI images, we used a deep learning model to classify the types of images such as gliomas, meningiomas, non-tumors, and pituitary tumors. The classification process was performed using recurrent convolutional neural networks (RCNN). The proposed method provides better results for classifying brain images from a given input dataset. The experiments were conducted on the Kaggle dataset with 394 testing sets and 2870 training set MRI images. The results illustrate that the proposed method achieves a higher performance than previous methods. Finally, the proposed RCNN method is compared with the current classification methods of BP, U-Net, and RCNN. The proposed classifier obtained 95.17% accuracy in classifying brain tumor tissues from MRI images. © 2022 The Authors
引用
收藏
相关论文
共 50 条
  • [21] Learning Architecture for Brain Tumor Classification Based on Deep Convolutional Neural Network: Classic and ResNet50
    Ali, Rabei Raad
    Yaacob, Noorayisahbe Mohd
    Alqaryouti, Marwan Harb
    Sadeq, Ala Eddin
    Doheir, Mohamed
    Iqtait, Musab
    Rachmawanto, Eko Hari
    Sari, Christy Atika
    Yaacob, Siti Salwani
    DIAGNOSTICS, 2025, 15 (05)
  • [22] Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification
    Hiba Mzoughi
    Ines Njeh
    Ali Wali
    Mohamed Ben Slima
    Ahmed BenHamida
    Chokri Mhiri
    Kharedine Ben Mahfoudhe
    Journal of Digital Imaging, 2020, 33 : 903 - 915
  • [23] Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network
    Wang, Yu
    Chen, Yating
    Yang, Ningning
    Zheng, Longfei
    Dey, Nilanjan
    Ashour, Amira S.
    Rajinikant, V
    Tavares, Joao Manuel R. S.
    Shi, Fuqian
    APPLIED SOFT COMPUTING, 2019, 74 : 40 - 50
  • [24] Ship images detection and classification based on convolutional neural network with multiple feature regions
    Xu, Zhijing
    Sun, Jiuwu
    Huo, Yuhao
    IET SIGNAL PROCESSING, 2022, 16 (06) : 707 - 721
  • [25] Image Classification Based on Convolutional Neural Network
    Prassanna, P. Lakshmi
    Sandeep, S.
    Rao, Kantha
    Sasidhar, T.
    Lavanya, D. Ragava
    Deepthi, G.
    SriLakshmi, N. Vijaya
    Mounika, P.
    Govardhani, U.
    SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2021, 2022, 93 : 833 - 842
  • [26] Fusing Convolutional Neural Networks with Segmentation for Brain Tumor Classification
    Ferariu, Lavinia
    Neculau, Emil-Daniel
    2021 25TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2021, : 249 - 254
  • [27] EWPCO-enabled Shepard convolutional neural network for classification of brain tumour using MRI image
    Sundaram, K. Mohana
    Sasikumar, R.
    IMAGING SCIENCE JOURNAL, 2024, 72 (03) : 349 - 366
  • [28] DBLCNN: Dependency-based lightweight convolutional neural network for multi-classification of breast histopathology images
    Wang, Chaoqing
    Gong, Weijun
    Cheng, Junlong
    Qian, Yurong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [29] Deep learning-based convolutional neural network for intramodality brain MRI synthesis
    Osman, Alexander F., I
    Tamam, Nissren M.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (04):
  • [30] A Parallel Deep Convolutional Neural Network for Alzheimer's disease classification on PET/CT brain images
    Baydargil, Husnu Baris
    Park, Jangsik
    Kang, Do-Young
    Kang, Hyun
    Cho, Kook
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (09): : 3583 - 3597