Proposal of unsupervised defect segmentation method for patterned textiles based on machine learning

被引:0
|
作者
Honda M. [1 ]
Hirosawa S. [1 ]
Mimura M. [2 ]
Hayami T. [2 ]
Kitaguchi S. [2 ]
Satou T. [2 ]
机构
[1] Kyoto Municipal Institute of Industrial Technology and Culture, 91 Chudoji Awata-Cho, Shimogyo-ku, Kyoto
[2] Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
关键词
Defect detection; Neural networks; Textiles; Traditional crafts industries; Unsupervised machine learning;
D O I
10.4188/jte.66.47
中图分类号
学科分类号
摘要
In this paper, we propose a convolutional autoencoder with a new structure for unsupervised learning when the purity of the training data is not guaranteed. This autoencoder has two unique features: the target area is reconstructed from the surrounding areas and the L2 loss is predicted simultaneously. The superiority of this model was verified using SEM images of defective nanofibrous materials by calculating the AUC value. The results of our experiments with the training data contaminated by defective data show that the former feature improves the robustness against contamination of the training data and the latter improves the accuracy. Although this approach did not achieve the highest accuracy, it could reduce the cost of annotation for practical use. Furthermore, we applied our method to images of NISHIJIN textiles and found that it worked well for some types of textiles. © 2020 The Textile Machinery Society of Japan.
引用
收藏
页码:47 / 54
页数:7
相关论文
共 50 条
  • [41] Research on Defect Detection Method of Painting Parts Based on Machine Vision
    Liang, Yi
    Zhao, Hongwang
    Tang, Xuebang
    Li, Tingpeng
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 347 - 357
  • [42] Defect measurement method of circular saw blade based on machine vision
    Wang, Hui
    Wang, Yangyu
    Ni, Pengcheng
    Lan, Gonghua
    Liu, Deguang
    He, Guojian
    Lou, Weiguang
    Feng, Erzhong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2025, 137 (3-4): : 2091 - 2107
  • [43] Human-machine knowledge hybrid augmentation method for surface defect detection based few-data learning
    Gong, Yu
    Wang, Xiaoqiao
    Zhou, Chichun
    Ge, Maogen
    Liu, Conghu
    Zhang, Xi
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025, 36 (03) : 1723 - 1742
  • [44] Steel Sheet Defect Detection Based on Deep Learning Method
    Zeng, Wei
    You, Zhiyuan
    Huang, Mingyue
    Kong, Zelong
    Yu, Yikuan
    Le, Xinyi
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 152 - 157
  • [45] A novel deep learning motivated data augmentation system based on defect segmentation requirements
    Shuanlong Niu
    Yaru Peng
    Bin Li
    Yuanhong Qiu
    Tongzhi Niu
    Weifeng Li
    Journal of Intelligent Manufacturing, 2024, 35 : 687 - 701
  • [46] Segmentation and Defect Classification of the Power Line Insulators: A Deep Learning-based Approach
    Alahyari, Arman
    Hinneck, Anton
    Tariverdizadeh, Rahim
    Pozo, David
    2020 INTERNATIONAL CONFERENCE ON SMART GRIDS AND ENERGY SYSTEMS (SGES 2020), 2020, : 476 - 481
  • [47] A novel deep learning motivated data augmentation system based on defect segmentation requirements
    Niu, Shuanlong
    Peng, Yaru
    Li, Bin
    Qiu, Yuanhong
    Niu, Tongzhi
    Li, Weifeng
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (02) : 687 - 701
  • [48] Machine Vision-based Defect Detection Using Deep Learning Algorithm
    Kim, Dae-Hyun
    Boo, Seung Bin
    Hong, Hyeon Cheol
    Yeo, Won Gu
    Lee, Nam Yong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2020, 40 (01) : 47 - 52
  • [49] A Random Forest Based Machine Learning Approach For Mild Steel Defect Diagnosis
    Jokhakar, Veena N.
    Patel, S. V.
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH, 2016, : 144 - 151
  • [50] Review on Machine Learning-based Defect Detection of Shield Tunnel Lining
    Kuang, Guixing
    Li, Bixiong
    Mo, Site
    Hu, Xiangxin
    Li, Lianghui
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2022, 66 (03): : 943 - 957