Analytical solutions for the short-term plasticity

被引:0
作者
Protachevicz, Paulo R. [1 ,2 ]
Batista, Antonio M. [1 ,3 ]
Caldas, Ibere L. [1 ]
Baptista, Murilo S. [2 ]
机构
[1] Univ Sao Paulo, Phys Inst, Sao Paulo, SP, Brazil
[2] Univ Aberdeen, Inst Complex Syst & Math Biol, Dept Phys, SUPA, Aberdeen, Scotland
[3] Univ Estadual Ponta Grossa, Math & Stat Dept, Ponta Grossa, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
Synaptic dynamics; Short-term plasticity; Synaptic map; Analytical approximation; Synaptic regimes; FIRE NEURON MODEL; SYNAPTIC PLASTICITY; ELECTRICAL SYNAPSES; DEPRESSION; INFORMATION; POTENTIATION; FACILITATION;
D O I
10.1016/j.chaos.2024.114678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Synaptic dynamics plays a key role in neuronal communication. Due to its high dimensionality, the main fundamental mechanisms triggering different synaptic dynamics and their relation with the neurotransmitter release regimes (facilitation, biphasic, and depression) are still elusive. For a general set of parameters, and employing an approximated solution for a set of differential equations associated with a synaptic model, we obtain a discrete map that provides analytical solutions that shed light on the dynamics of synapses. Assuming that the presynaptic neuron perturbing the neuron whose synapse is being modelled is spiking periodically, we derive the stable equilibria and the maximal values for the release regimes as a function of the percentage of neurotransmitter released and the mean frequency of the presynaptic spiking neuron. Assuming that the presynaptic neuron is spiking stochastically following a Poisson distribution, we demonstrate that the equations for the time average of the trajectory are the same as the map under the periodic presynaptic stimulus, admitting the same equilibrium points. Thus, the synapses under stochastic presynaptic spikes, emulating the spiking behaviour produced by a complex neural network, wander around the equilibrium points of the synapses under periodic stimulus, which can be fully analytically calculated.
引用
收藏
页数:9
相关论文
共 54 条
  • [1] Synaptic computation
    Abbott, LF
    Regehr, WG
    [J]. NATURE, 2004, 431 (7010) : 796 - 803
  • [2] Spike count reliability and the Poisson hypothesis
    Amarasingham, A
    Chen, TL
    Geman, S
    Harrison, MT
    Sheinberg, DL
    [J]. JOURNAL OF NEUROSCIENCE, 2006, 26 (03) : 801 - 809
  • [3] Persistent activity in neural networks with dynamic synapses
    Barak, Omri
    Tsodyks, Misha
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (02) : 323 - 332
  • [4] Models of Short-Term Synaptic Plasticity
    Barroso-Flores, Janet
    Herrera-Valdez, Marco A.
    Galarraga, Elvira
    Bargas, Jose
    [J]. PLASTIC BRAIN, 2017, 1015 : 41 - 57
  • [5] Bear MF, 2007, Neuroscience: Exploring the brain
  • [6] Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity
    Bertolotti, Elena
    Burioni, Raffaella
    di Volo, Matteo
    Vezzani, Alessandro
    [J]. PHYSICAL REVIEW E, 2017, 95 (01)
  • [7] Long-term potentiation and long-term depression: a clinical perspective
    Bliss, Timothy V. P.
    Cooke, Sam F.
    [J]. CLINICS, 2011, 66 : 3 - 17
  • [8] Short-term synaptic plasticity: A comparison of two synapses
    Blitz, DM
    Foster, KA
    Regehr, WG
    [J]. NATURE REVIEWS NEUROSCIENCE, 2004, 5 (08) : 630 - 640
  • [9] Self-sustained activity of low firing rate in balanced networks
    Borges, F. S.
    Protachevicz, P. R.
    Pena, R. F. O.
    Lameu, E. L.
    Higa, G. S., V
    Kihara, J. A. H.
    Matias, F. S.
    Antonopoulos, C. G.
    de Pasquale, R.
    Roque, A. C.
    Iarosz, K. C.
    Ji, P.
    Batista, A. M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 537
  • [10] Decoding temporal information: A model based on short-term synaptic plasticity
    Buonomano, DV
    [J]. JOURNAL OF NEUROSCIENCE, 2000, 20 (03) : 1129 - 1141