Microfluidic high-throughput 3D cell culture

被引:17
|
作者
Ko, Jihoon [1 ]
Park, Dohyun [2 ]
Lee, Jungseub [2 ]
Jung, Sangmin [2 ]
Baek, Kyusuk [3 ]
Sung, Kyung E. [4 ]
Lee, Jeeyun [5 ]
Jeon, Noo Li [2 ,3 ,6 ]
机构
[1] Gachon Univ, Dept BioNano Technol, Seongnam Si, South Korea
[2] Seoul Natl Univ, Mech Engn, Seoul, South Korea
[3] Qureator Inc, San Diego, CA 92121 USA
[4] US FDA, Ctr Biol Evaluat & Res, Cellular & Tissue Therapies Branch, Off Cellular Therapy & Human Tissue, Silver Spring, MD USA
[5] Sungkyunkwan Univ, Samsung Med Ctr, Dept Med, Div Hematol Oncol, Seoul, South Korea
[6] Seoul Natl Univ, Inst Adv Machines & Design, Seoul, South Korea
来源
NATURE REVIEWS BIOENGINEERING | 2024年 / 2卷 / 06期
基金
新加坡国家研究基金会;
关键词
ON-A-CHIP; PLURIPOTENT-STEM-CELL; INTERSTITIAL FLOW; ENDOTHELIAL-CELLS; PLATFORM; BARRIER; MEDICINE; STIMULATION; MATURATION; ORGANOIDS;
D O I
10.1038/s44222-024-00163-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High-throughput 3D microfluidic cell culture systems can be designed to model aspects of human tissues and organs and may thus serve as non-clinical evaluation tools. They benefit from large-scale production, high throughput, compatibility with automated equipment, standardized analysis and the generation of physiologically relevant results. In this Review, we discuss how microfluidic devices can be designed with different biological complexity, cell sources and cell configurations, as well as physiological parameters to mimic human tissues. We examine standardization, scalability and automation strategies, and outline high-throughput data generation and analysis approaches to interpret readouts of microfluidic 3D cell culture models. Finally, we explore the potential of these tools as non-clinical testing systems for drug development and outline key future challenges in device design and application.
引用
收藏
页码:453 / 469
页数:17
相关论文
共 50 条
  • [1] Perfusable 3D angiogenesis in a high-throughput microfluidic culture platform
    Bircsak, K. M.
    van Duinen, V.
    Trietsch, S. J.
    van Zonneveld, A. J.
    Hankemeier, T.
    Saleh, A.
    Vulto, P.
    CANCER RESEARCH, 2018, 78 (13)
  • [2] High-throughput microfluidic platform for culture of 3D kidney tissue models
    Lanz, H. L.
    Vormann, M.
    van den Heuvel, A.
    Ng, C. P.
    van Vught, R.
    Trietsch, S. J. T.
    Joore, J.
    Vulto, P.
    TOXICOLOGY LETTERS, 2016, 259 : S11 - S11
  • [3] High-throughput microfluidic platform for culture of 3D kidney tissue models
    Vormann, M. K.
    Trietsch, S. J.
    Vught, R. V.
    Joore, J.
    Vulto, P.
    Lanz, H.
    TOXICOLOGY LETTERS, 2016, 258 : S157 - S157
  • [5] 3D cell culture microarray for high-throughput studies of stem cell fate
    Fernandes, Tiago G.
    Kwon, Seok-Joon
    Bale, Shyam Sundhar
    Lee, Moo-Yeal
    Diogo, Maria Margarida
    Clark, Douglas S.
    Cabral, Joaquim Ms
    Dordick, Jonathan S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [6] 3D printed alginate bead generator for high-throughput cell culture
    Lee, Donghee
    Greer, Sydney E.
    Kuss, Mitchell A.
    An, Yang
    Dudley, Andrew T.
    BIOMEDICAL MICRODEVICES, 2021, 23 (02)
  • [7] Synthesis and High-Throughput Processing of Polymeric Hydrogels for 3D Cell Culture
    Lowe, Stuart B.
    Tan, Vincent T. G.
    Soeriyadi, Alexander H.
    Davis, Thomas P.
    Gooding, J. Justin
    BIOCONJUGATE CHEMISTRY, 2014, 25 (09) : 1581 - 1601
  • [8] 3D printed alginate bead generator for high-throughput cell culture
    Donghee Lee
    Sydney E. Greer
    Mitchell A. Kuss
    Yang An
    Andrew T. Dudley
    Biomedical Microdevices, 2021, 23
  • [9] 3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation
    Kang, Dong-Ku
    Gong, Xiuqing
    Cho, Soongwon
    Kim, Jin-young
    Edel, Joshua B.
    Chang, Soo-Ik
    Choo, Jaebum
    deMello, Andrew J.
    ANALYTICAL CHEMISTRY, 2015, 87 (21) : 10770 - 10778
  • [10] Development of a novel high-throughput culture system for hypoxic 3D hydrogel cell culture
    Egger, Dominik
    Baier, Luisa
    Moldaschl, Julia
    Taschner, Manfred
    Lorber, Volker
    Kasper, Cornelia
    SCIENTIFIC REPORTS, 2024, 14 (01):