Microfluidic high-throughput 3D cell culture

被引:29
作者
Ko, Jihoon [1 ]
Park, Dohyun [2 ]
Lee, Jungseub [2 ]
Jung, Sangmin [2 ]
Baek, Kyusuk [3 ]
Sung, Kyung E. [4 ]
Lee, Jeeyun [5 ]
Jeon, Noo Li [2 ,3 ,6 ]
机构
[1] Gachon Univ, Dept BioNano Technol, Seongnam Si, South Korea
[2] Seoul Natl Univ, Mech Engn, Seoul, South Korea
[3] Qureator Inc, San Diego, CA 92121 USA
[4] US FDA, Ctr Biol Evaluat & Res, Cellular & Tissue Therapies Branch, Off Cellular Therapy & Human Tissue, Silver Spring, MD USA
[5] Sungkyunkwan Univ, Samsung Med Ctr, Dept Med, Div Hematol Oncol, Seoul, South Korea
[6] Seoul Natl Univ, Inst Adv Machines & Design, Seoul, South Korea
来源
NATURE REVIEWS BIOENGINEERING | 2024年 / 2卷 / 06期
基金
新加坡国家研究基金会;
关键词
ON-A-CHIP; PLURIPOTENT-STEM-CELL; INTERSTITIAL FLOW; ENDOTHELIAL-CELLS; PLATFORM; BARRIER; MEDICINE; STIMULATION; MATURATION; ORGANOIDS;
D O I
10.1038/s44222-024-00163-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High-throughput 3D microfluidic cell culture systems can be designed to model aspects of human tissues and organs and may thus serve as non-clinical evaluation tools. They benefit from large-scale production, high throughput, compatibility with automated equipment, standardized analysis and the generation of physiologically relevant results. In this Review, we discuss how microfluidic devices can be designed with different biological complexity, cell sources and cell configurations, as well as physiological parameters to mimic human tissues. We examine standardization, scalability and automation strategies, and outline high-throughput data generation and analysis approaches to interpret readouts of microfluidic 3D cell culture models. Finally, we explore the potential of these tools as non-clinical testing systems for drug development and outline key future challenges in device design and application.
引用
收藏
页码:453 / 469
页数:17
相关论文
共 223 条
[1]   Establishment of a heart-on-a-chip microdevice based on human iPS cells for the evaluation of human heart tissue function [J].
Abulaiti, Mosha ;
Yalikun, Yaxiaer ;
Murata, Kozue ;
Sato, Asako ;
Sami, Mustafa M. ;
Sasaki, Yuko ;
Fujiwara, Yasue ;
Minatoya, Kenji ;
Shiba, Yuji ;
Tanaka, Yo ;
Masumoto, Hidetoshi .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   A Review of Cyclic Olefin Copolymer Applications in Microfluidics and Microdevices [J].
Agha, Abdulrahman ;
Waheed, Waqas ;
Alamoodi, Nahla ;
Mathew, Bobby ;
Alnaimat, Fadi ;
Abu-Nada, Eiyad ;
Abderrahmane, Aissa ;
Alazzam, Anas .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2022, 307 (08)
[3]   Hydrogels as artificial matrices for cell seeding in microfluidic devices [J].
Akther, Fahima ;
Little, Peter ;
Li, Zhiyong ;
Nguyen, Nam-Trung ;
Ta, Hang T. .
RSC ADVANCES, 2020, 10 (71) :43682-43703
[4]   Impact of Fibrinogen, Fibrin Thrombi, and Thrombin on Cancer Cell Extravasation Using In Vitro Microvascular Networks [J].
Angelidakis, Emmanouil ;
Chen, Sophia ;
Zhang, Shun ;
Wan, Zhengpeng ;
Kamm, Roger D. ;
Shelton, Sarah E. .
ADVANCED HEALTHCARE MATERIALS, 2023, 12 (19)
[5]   Microfluidics guided by deep learning for cancer immunotherapy screening [J].
Ao, Zheng ;
Cai, Hongwei ;
Wu, Zhuhao ;
Hu, Liya ;
Nunez, Asael ;
Zhou, Zhuolong ;
Liu, Hongcheng ;
Bondesson, Maria ;
Lu, Xiongbin ;
Lu, Xin ;
Dao, Ming ;
Guo, Feng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (46)
[6]   Collagen I Based Enzymatically Degradable Membranes for Organ-on-a-Chip Barrier Models [J].
Arik, Yusuf B. ;
Vivas, Aisen de sa ;
Laarveld, Daphne ;
van Laar, Neri ;
Gemser, Jesse ;
Visscher, Thomas ;
van den Berg, Albert ;
Passier, Robert ;
van der Meer, Andries D. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (07) :2998-3005
[7]   Determination of critical shear stress for maturation of human pluripotent stem cell-derived endothelial cells towards an arterial subtype [J].
Arora, Seep ;
Lam, Adele Jing Ying ;
Cheung, Christine ;
Yim, Evelyn K. F. ;
Toh, Yi-Chin .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (05) :1164-1175
[8]   Clusters of circulating tumor cells traverse capillary-sized vessels [J].
Au, Sam H. ;
Storey, Brian D. ;
Moore, John C. ;
Tang, Qin ;
Chen, Yeng-Long ;
Javaid, Sarah ;
Sarioglu, A. Fatih ;
Sullivan, Ryan ;
Madden, Marissa W. ;
O'Keefe, Ryan ;
Haber, Daniel A. ;
Maheswaran, Shyamala ;
Langenau, David M. ;
Stott, Shannon L. ;
Toner, Mehmet .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (18) :4947-4952
[9]   An Engineered Tumor-on-a-Chip Device with Breast Cancer-Immune Cell Interactions for Assessing T-cell Recruitment [J].
Aung, Aereas ;
Kumar, Vardhman ;
Theprungsirikul, Jomkuan ;
Davey, Shruti K. ;
Varghese, Shyni .
CANCER RESEARCH, 2020, 80 (02) :263-275
[10]   Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion [J].
Ayuso, Jose M. ;
Rehman, Shujah ;
Virumbrales-Munoz, Maria ;
McMinn, Patrick H. ;
Geiger, Peter ;
Fitzgerald, Cate ;
Heaster, Tiffany ;
Skala, Melissa C. ;
Beebe, David J. .
SCIENCE ADVANCES, 2021, 7 (08)