Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation

被引:8
|
作者
Liao, Muxin [1 ]
Tian, Shishun [1 ]
Zhang, Yuhang [1 ]
Hua, Guoguang [1 ]
Zou, Wenbin [1 ]
Li, Xia [1 ]
机构
[1] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Metalearning; Semantic segmentation; Frequency-domain analysis; Semantics; Training; Cutoff frequency; Domain adaptation; semantic segmentation; frequency-spectrum meta-learning framework; class-aware domain-specific memory bank; ADAPTATION;
D O I
10.1109/TITS.2024.3386743
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Unsupervised domain adaptation semantic segmentation (UDASS) methods aim to learn domain-invariant information for alleviating the distribution shift problem between the source and target domains. However, ignoring the learning of domain-specific information that is label-related may limit the class discriminability on the target domain. We argue that a good representation for the UDASS task not only contains domain-invariant information but also preserves label-related domain-specific information. In this paper, a novel frequency spectrum domain adaptation approach via meta-learning (ML-FSDA) is proposed to achieve this goal for improving the class discriminability and generalization ability. ML-FSDA contains a frequency-spectrum meta-learning framework (FMF) and a class-aware domain-specific memory bank (CDMB). Specifically, first, inspired by the observation that the high-frequency component is consistent across different domains while the low-frequency component is much more domain-specific, the FMF aims to respectively learn label-related domain-specific and domain-invariant information from low-frequency and high-frequency images in a unified framework via the meta-learning strategy. Second, the CDMB is designed to preserve the label-related domain-specific information of each class in an external memory bank while the CDMB is updated in every iteration of the meta-training stage. Finally, the CDMB is utilized to embed the label-related domain-specific information into domain-invariant information at the class level during the meta-testing stage to enhance the class discriminability on the target domain. Extensive experiments demonstrate the effectiveness of ML-FSDA on two challenging cross-domain semantic segmentation benchmarks. Notably, for the GTA5 to Cityscapes task and the SYNTHIA to Cityscapes task, the proposed ML-FSDA achieves superior performance with 77.3% mIoU and 68.8% mIoU, respectively. The source code is released at https://github.com/seabearlmx/FSL.
引用
收藏
页码:14917 / 14931
页数:15
相关论文
共 50 条
  • [1] Cross-Domain Transformer with Adaptive Thresholding for Domain Adaptive Semantic Segmentation
    Liu, Quansheng
    Wang, Lei
    Jun, Yu
    Gao, Fang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 147 - 159
  • [2] Source-Data-Free Cross-Domain Knowledge Transfer for Semantic Segmentation
    Li, Zongyao
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 92 - 100
  • [3] Category-Level Adversaries for Outdoor LiDAR Point Clouds Cross-Domain Semantic Segmentation
    Yuan, Zhimin
    Wen, Chenglu
    Cheng, Ming
    Su, Yanfei
    Liu, Weiquan
    Yu, Shangshu
    Wang, Cheng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1982 - 1993
  • [4] Cross-Domain Incremental Feature Learning for ALS Point Cloud Semantic Segmentation With Few Samples
    Dai, Mofan
    Xing, Shuai
    Xu, Qing
    Li, Pengcheng
    Pan, Jiechen
    Wang, Hanyun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [5] TACS: Taxonomy Adaptive Cross-Domain Semantic Segmentation
    Gong, Rui
    Danelljan, Martin
    Dai, Dengxin
    Paudel, Danda Pani
    Chhatkuli, Ajad
    Yu, Fisher
    Van Gool, Luc
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 19 - 35
  • [6] Multilevel Self-Training Approach for Cross-Domain Semantic Segmentation in Intelligent Vehicles
    Chen, Yung-Yao
    Jhong, Sin-Ye
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2024, 16 (01) : 148 - 161
  • [7] Category-Level Assignment for Cross-Domain Semantic Segmentation in Remote Sensing Images
    Ni, Huan
    Liu, Qingshan
    Guan, Haiyan
    Tang, Hong
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Self-Ensembling GAN for Cross-Domain Semantic Segmentation
    Xu, Yonghao
    He, Fengxiang
    Du, Bo
    Tao, Dacheng
    Zhang, Liangpei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7837 - 7850
  • [9] Prototypical Bidirectional Adaptation and Learning for Cross-Domain Semantic Segmentation
    Ren, Qinghua
    Mao, Qirong
    Lu, Shijian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 501 - 513
  • [10] Depth-Assisted ResiDualGAN for Cross-Domain Aerial Images Semantic Segmentation
    Yang, Zhao
    Guo, Peng
    Gao, Han
    Chen, Xiuwan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20