On the Relationship of Optimal State Feedback and Disturbance Response Controllers

被引:0
作者
Zhang, Runyu [1 ]
Zheng, Yang [2 ]
Li, Weiyu [1 ]
Li, Na [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Linear Quadratic Regulator; State Feedback Control; Disturbance Response Control;
D O I
10.1016/j.ifacol.2023.10.645
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the relationship between state feedback policies and disturbance response policies for the standard Linear Quadratic Regulator (LQR). For open-loop stable plants, we establish a simple relationship between the optimal state feedback controller u(t) = K*x(t) and the optimal disturbance response controller u(t) = L(*;1)((H))w(t)- 1 +... + L(*;H)((H))w(t- H) with H-order. Here x(t), w(t), u(t) stands for the state, disturbance, control action of the system, respectively. Our result shows that L-*,1((H)) is a good approximation of K-* and the approximation error vertical bar K-* - L-*,1((H))vertical bar decays exponentially with H. We further extend this result to LQR for open-loop unstable systems, when a pre-stabilizing controller K-0 is available. Copyright (c) 2023 The Authors.
引用
收藏
页码:7503 / 7508
页数:6
相关论文
共 20 条
  • [1] Agarwal N, 2019, ADV NEUR IN, V32
  • [2] Agarwal Naman, 2019, P MACHINE LEARNING R, V97
  • [3] Anderson Brian DO, 2007, Optimal Control
  • [4] Englar T., 1966, Technical report
  • [5] Fazel M, 2018, PR MACH LEARN RES, V80
  • [6] An Input-Output Parametrization of Stabilizing Controllers: Amidst Youla and System Level Synthesis
    Furieri, Luca
    Zheng, Yang
    Papachristodoulou, Antonis
    Kamgarpour, Maryam
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (04): : 1014 - 1019
  • [7] Optimization over state feedback policies for robust control with constraints
    Goulart, PJ
    Kerrigan, EC
    Maciejowski, JA
    [J]. AUTOMATICA, 2006, 42 (04) : 523 - 533
  • [8] Hu Bin, 2022, Towards a theoretical foundation of policy optimization for learning control policies
  • [9] ON AN ITERATIVE TECHNIQUE FOR RICCATI EQUATION COMPUTATIONS
    KLEINMAN, DL
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (01) : 114 - +
  • [10] Krauth K, 2019, ADV NEUR IN, V32