Predicting angiographic coronary artery disease using machine learning and high-frequency QRS

被引:0
作者
Zhang, Jiajia [1 ,2 ]
Zhang, Heng [1 ]
Wei, Ting [1 ]
Kang, Pinfang [1 ,2 ]
Tang, Bi [1 ]
Wang, Hongju [1 ]
机构
[1] Bengbu Med Univ, Affiliated Hosp 1, Dept Cardiovasc Dis, Bengbu 233099, Anhui, Peoples R China
[2] Bengbu Med Univ, Key Lab Basic & Clin Cardiovasc & Cerebrovascular, Bengbu 233030, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Coronary artery disease; High-frequency QRS; CARDIOVASCULAR-DISEASE; HEART-DISEASE; RISK; DEATH; MORTALITY; ELEVATION; IMPROVES; EVENTS; WOMEN; MODEL;
D O I
10.1186/s12911-024-02620-1
中图分类号
R-058 [];
学科分类号
摘要
Aim Exercise stress ECG is a common diagnostic test for stable coronary artery disease, but its sensitivity and specificity need to be further improved. In this paper, we construct a machine learning model for the prediction of angiographic coronary artery disease by HFQRS analysis of cycling exercise ECG. Methods and results This study prospectively included 140 inpatients and 59 healthy volunteers undergoing cycling exercise ECG. The CHD group (N=104) and non-CHD group (N=95) were determined by coronary angiography gold standard. Automated HF QRS analysis was performed by the blinded method. The coronary group was predominantly male, with a higher prevalence of age, BMI, hypertension, and diabetes than the non-coronary group (P<0.001), higher lipid levels in the coronary group (P<0.005), significantly longer QRS duration during exercise testing (P<0.005), more positive leads (P<0.001), and a greater proportion of significant changes in HFQRS (P<0.001). Age, Gender, Hypertension, Diabetes, and HF QRS Conclusions were screened by correlation analysis and multifactorial retrospective analysis to construct the machine learning models of the XGBoost Classifier, Logistic Regression, LightGBM Classifier, RandomForest Classifier, Artificial Neural Network and Support Vector Machine, respectively. Conclusion Male, elderly, with hypertension, diabetes mellitus, and positive exercise stress test HFQRS conclusions suggested a high risk of CHD. The best performance of the Logistic Regression model was compared, and a column line graph for assessing the risk of CHD was further developed and validated.
引用
收藏
页数:14
相关论文
共 47 条
[1]   Diagnostic and prognostic values of the V-index, a novel ECG marker quantifying spatial heterogeneity of ventricular repolarization, in patients with symptoms suggestive of non-ST-elevation myocardial infarction [J].
Abacherli, Roger ;
Twerenbold, Raphael ;
Boeddinghaus, Jasper ;
Nestelberger, Thomas ;
Machler, Patrick ;
Sassi, Roberto ;
Rivolta, Massimo W. ;
Roonizi, Ebadollah Kheirati ;
Mainardi, Luca T. ;
Kozhuharov, Nikola ;
Gimenez, Maria Rubini ;
Wildi, Karin ;
Grimma, Karin ;
Sabti, Zaid ;
Hillinger, Petra ;
Puelacher, Christian ;
Strebel, Ivo ;
Cupa, Janosch ;
Badertscher, Patrick ;
Roux, Isabelle ;
Schmid, Ramun ;
Leber, Remo ;
Osswald, Stefan ;
Mueller, Christian ;
Reichlin, Tobias .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 236 :23-29
[2]   Heart rate variability: a review [J].
Acharya, U. Rajendra ;
Joseph, K. Paul ;
Kannathal, N. ;
Lim, Choo Min ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (12) :1031-1051
[3]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[4]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[5]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[6]   Electrocardiogram classification using TSST-based spectrogram and ConViT [J].
Bing, Pingping ;
Liu, Yang ;
Liu, Wei ;
Zhou, Jun ;
Zhu, Lemei .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[7]   ST/HR variables in firefighter exercise ECG - relation to ischemic heart disease [J].
Carlen, Anna ;
Nylander, Eva ;
Aneq, Meriam Astrom ;
Gustafsson, Mikael .
PHYSIOLOGICAL REPORTS, 2019, 7 (02)
[8]   Simple to electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease [J].
Chatterjee, Neal A. ;
Tikkanen, Jani T. ;
Panicker, Gopi K. ;
Narula, Dhiraj ;
Lee, Daniel C. ;
Kentta, Tuomas ;
Junttila, Juhani M. ;
Cook, Nancy R. ;
Kadish, Alan ;
Goldberger, Jeffrey J. ;
Huikuri, Heikki, V ;
Albert, Christine M. .
EUROPEAN HEART JOURNAL, 2020, 41 (21) :1988-1999
[9]   Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy [J].
Cikes, Maja ;
Sanchez-Martinez, Sergio ;
Claggett, Brian ;
Duchateau, Nicolas ;
Piella, Gemma ;
Butakoff, Constantine ;
Pouleur, Anne Catherine ;
Knappe, Dorit ;
Biering-Sorensen, Tor ;
Kutyifa, Valentina ;
Moss, Arthur ;
Stein, Kenneth ;
Solomon, Scott D. ;
Bijnens, Bart .
EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 (01) :74-85
[10]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003