Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems

被引:3
|
作者
Dissanayake, Pavani Dulanja [1 ,2 ,3 ]
Withana, Piumi Amasha [1 ,2 ,4 ]
Sang, Mee Kyung [5 ]
Cho, Yoora [1 ,2 ,4 ]
Park, Jeyoung [6 ,7 ]
Oh, Dongyeop X. [6 ,8 ,9 ]
Chang, Scott X. [10 ]
Lin, Carol Sze Ki [11 ]
Bank, Michael S. [12 ,13 ]
Hwang, Sung Yeon [6 ,14 ]
Ok, Yong Sik [1 ,2 ,4 ,15 ]
机构
[1] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul, 02841, South Korea
[2] Korea Univ, Div Environm Sci & Ecol Engn, Seoul, 02841, South Korea
[3] Coconut Res Inst, Soils & Plant Nutr Div, Lunuwilla, Sri Lanka
[4] Int ESG Assoc IESGA, Seoul, South Korea
[5] Natl Inst Agr Sci, Div Agr Microbiol, Wonju, South Korea
[6] Korea Res Inst Chem Technol KRICT, Res Ctr Biobased Chem, Ulsan, South Korea
[7] Sogang Univ, Dept Chem & Biomol Engn, Seoul, South Korea
[8] Inha Univ, Dept Polymer Sci & Engn, Incheon, South Korea
[9] Inha Univ, Program Environm & Polymer Engn, Incheon, South Korea
[10] Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada
[11] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[12] Inst Marine Res, Bergen, Norway
[13] Univ Massachusetts, Amherst, MA USA
[14] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin, South Korea
[15] Univ Queensland, Sustainable Minerals Inst, Brisbane, Qld, Australia
基金
新加坡国家研究基金会;
关键词
biodegradable plastics; circular economy; environmental; social; and governance (ESG); greenwashing; soil resource; MULCH FILMS; PLA; BEHAVIOR; BLENDS; PBAT; MICROPLASTICS; BIOPLASTICS; WASTE;
D O I
10.1111/sum.13055
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Despite that biodegradable plastics are perceived as environmentally friendly, there is a lack of comprehensive understanding of their fate in soil. Current Environmental, Social, and Governance (ESG) frameworks, along with new UNEP regulations on plastic pollution, necessitate scientific information on plastic degradation in soils for developing sustainable biodegradable plastics. In this study, we examined the degradation rates of two biodegradable plastics, poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA), in a laboratory microcosm experiment using uncontaminated soil, with PBAT or PLA added at 8.3% (w/w). Our aim was to further understand the impact of these plastic types on soil properties and microbial communities under different incubation temperatures. Both PBAT and PLA treatments elevated cumulative CO2 efflux compared with the control soil incubated at 25 and 58 degrees C. After 33 weeks, 9.2% and 6.1% of the added PBAT and PLA degraded, respectively, at 58 degrees C, while only 2.3% of PBAT and 1.7% of PLA degraded at 25 degrees C, implying slower degradation rates of PBAT and PLA under the lower temperature. Degradation at 58 degrees C increased total soil carbon by 0.6%, 1.9%, and 4.3% for Control, PBAT, and PLA, respectively, and soil electrical conductivity by 0.17, 0.33, and 2.38 dS m-1, respectively, but decreased soil pH. Microbial diversity and richness decreased under thermophilic conditions at 58 degrees C compared with that at 25 degrees C. We conclude that the degradation of PBAT and PLA varies with environmental condition, and influences soil properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends
    Kang, Kyoung Soo
    Kim, Bong Shik
    Jang, Woo Yeul
    Shin, Boo Young
    POLYMER-KOREA, 2009, 33 (02) : 164 - 168
  • [42] Synergistic toughening of poly(lactic acid) by poly(butylene adipate-co-terephthalate) and poly(methyl methacrylate)-poly(butyl acrylate)-poly(methyl methacrylate) block copolymer
    Zhang, Haifeng
    Dong, Chungang
    Han, Xiangyan
    Han, Yuanyuan
    Zhao, Fengyang
    Yan, Nan
    Hu, Yuexin
    Zhao, Guiyan
    POLYMER ENGINEERING AND SCIENCE, 2022, 62 (07) : 2274 - 2282
  • [43] A Comparative Study on the Melt Crystallization of Biodegradable Poly(butylene succinate-co-terephthalate) and Poly(butylene adipate-co-terephthalate) Copolyesters
    Qin, Pengkai
    Wu, Linbo
    POLYMERS, 2024, 16 (17)
  • [44] Preparation of Polymer Blends between Poly (L-lactic acid), Poly (butylene succinate-co-adipate) and Poly (butylene adipate-co-terephthalate) for Blow Film Industrial Application
    Pivsa-Art, Weraporn
    Pavasupree, Sorapong
    O-Charoen, Narongchai
    Insuan, Ubon
    Jailak, Puritud
    Pivsa-Art, Sommai
    9TH ECO-ENERGY AND MATERIALS SCIENCE AND ENGINEERING SYMPOSIUM, 2011, 9
  • [45] Mechanical, Thermal, and Morphological Properties of Sawdust/Poly(lactic acid) Composites: Effects of Alkali Treatment and Poly(butylene adipate-co-terephthalate) Content
    Nomai, Jiraporn
    Jarapanyacheep, Rapisa
    Jarukumjorn, Kasama
    MACROMOLECULAR SYMPOSIA, 2015, 354 (01) : 244 - 250
  • [46] Optimising Ductility of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends Through Co-continuous Phase Morphology
    Deng, Yixin
    Yu, Changyi
    Wongwiwattana, Peangpatu
    Thomas, Noreen L.
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2018, 26 (09) : 3802 - 3816
  • [47] Effect of electron beam irradiation dose on the properties of commercial biodegradable poly(lactic acid), poly(butylenes adipate-co-terephthalate) and their blends
    Zhao, Yuping
    Li, Qiuxuan
    Wang, Bowen
    Wang, Yaming
    Liu, Chuntai
    Shen, Changyu
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2020, 478 : 131 - 136
  • [48] Toughening of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): a morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment
    Schmitz, Luiza
    Harada, Julio
    Ribeiro, Willian B.
    Rosa, Derval Santos
    Brandalise, Rosmary N.
    COLLOID AND POLYMER SCIENCE, 2023, 301 (12) : 1405 - 1419
  • [49] Toughening of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): a morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment
    Luíza Schmitz
    Júlio Harada
    Willian B. Ribeiro
    Derval Santos Rosa
    Rosmary N. Brandalise
    Colloid and Polymer Science, 2023, 301 : 1405 - 1419
  • [50] Preparation and Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blend with Epoxy-Functional Styrene Acrylic Copolymer as Reactive Agent
    Zhang, Naiwen
    Zeng, Chao
    Wang, Liang
    Ren, Jie
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2013, 21 (01) : 286 - 292