Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems

被引:3
|
作者
Dissanayake, Pavani Dulanja [1 ,2 ,3 ]
Withana, Piumi Amasha [1 ,2 ,4 ]
Sang, Mee Kyung [5 ]
Cho, Yoora [1 ,2 ,4 ]
Park, Jeyoung [6 ,7 ]
Oh, Dongyeop X. [6 ,8 ,9 ]
Chang, Scott X. [10 ]
Lin, Carol Sze Ki [11 ]
Bank, Michael S. [12 ,13 ]
Hwang, Sung Yeon [6 ,14 ]
Ok, Yong Sik [1 ,2 ,4 ,15 ]
机构
[1] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul, 02841, South Korea
[2] Korea Univ, Div Environm Sci & Ecol Engn, Seoul, 02841, South Korea
[3] Coconut Res Inst, Soils & Plant Nutr Div, Lunuwilla, Sri Lanka
[4] Int ESG Assoc IESGA, Seoul, South Korea
[5] Natl Inst Agr Sci, Div Agr Microbiol, Wonju, South Korea
[6] Korea Res Inst Chem Technol KRICT, Res Ctr Biobased Chem, Ulsan, South Korea
[7] Sogang Univ, Dept Chem & Biomol Engn, Seoul, South Korea
[8] Inha Univ, Dept Polymer Sci & Engn, Incheon, South Korea
[9] Inha Univ, Program Environm & Polymer Engn, Incheon, South Korea
[10] Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada
[11] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[12] Inst Marine Res, Bergen, Norway
[13] Univ Massachusetts, Amherst, MA USA
[14] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin, South Korea
[15] Univ Queensland, Sustainable Minerals Inst, Brisbane, Qld, Australia
基金
新加坡国家研究基金会;
关键词
biodegradable plastics; circular economy; environmental; social; and governance (ESG); greenwashing; soil resource; MULCH FILMS; PLA; BEHAVIOR; BLENDS; PBAT; MICROPLASTICS; BIOPLASTICS; WASTE;
D O I
10.1111/sum.13055
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Despite that biodegradable plastics are perceived as environmentally friendly, there is a lack of comprehensive understanding of their fate in soil. Current Environmental, Social, and Governance (ESG) frameworks, along with new UNEP regulations on plastic pollution, necessitate scientific information on plastic degradation in soils for developing sustainable biodegradable plastics. In this study, we examined the degradation rates of two biodegradable plastics, poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA), in a laboratory microcosm experiment using uncontaminated soil, with PBAT or PLA added at 8.3% (w/w). Our aim was to further understand the impact of these plastic types on soil properties and microbial communities under different incubation temperatures. Both PBAT and PLA treatments elevated cumulative CO2 efflux compared with the control soil incubated at 25 and 58 degrees C. After 33 weeks, 9.2% and 6.1% of the added PBAT and PLA degraded, respectively, at 58 degrees C, while only 2.3% of PBAT and 1.7% of PLA degraded at 25 degrees C, implying slower degradation rates of PBAT and PLA under the lower temperature. Degradation at 58 degrees C increased total soil carbon by 0.6%, 1.9%, and 4.3% for Control, PBAT, and PLA, respectively, and soil electrical conductivity by 0.17, 0.33, and 2.38 dS m-1, respectively, but decreased soil pH. Microbial diversity and richness decreased under thermophilic conditions at 58 degrees C compared with that at 25 degrees C. We conclude that the degradation of PBAT and PLA varies with environmental condition, and influences soil properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Enhancing the toughness of poly(lactic acid) with a novel, highly flexible and biodegradable polyester: poly(ethylene adipate-co-terephthalate) terephthalate
    Jiang, Jiacheng
    He, Zhen
    Yin, Wang
    Chen, Rui
    He, Jing
    Lang, Meidong
    JOURNAL OF POLYMER RESEARCH, 2024, 31 (06)
  • [22] Effectiveness of modified lignin on poly(butylene adipate-co-terephthalate)/poly(lactic acid) mulch film performance
    Barros, Janetty J. P.
    Oliveira, Rene R.
    Luna, Carlos B. B.
    Wellen, Renate M. R.
    Moura, Esperidiana A. B.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (46)
  • [23] Phase Structure Analysis and Composition Optimization of Poly(Lactic Acid)/Poly(Butylene Adipate-co-terephthalate) Blends
    Li, Guozhong
    Xia, Ying
    Mu, Guangqing
    Yang, Qian
    Zhou, Huimin
    Lin, Xiaojian
    Gao, Yuanmei
    Qian, Fang
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2022, 61 (03): : 413 - 424
  • [24] Chemical modification of poly(lactic acid) and its use as matrix in poly(lactic acid) poly(butylene adipate-co-terephthalate) blends
    Rigolin, Talita Rocha
    Costa, Lidiane Cristina
    Chinelatto, Marcelo Aparecido
    Riveros Munoz, Pablo Andres
    Prado Bettini, Silvia Helena
    POLYMER TESTING, 2017, 63 : 542 - 549
  • [25] Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Dil, Ebrahim Jalali
    Carreau, P. J.
    Favis, Basil D.
    POLYMER, 2015, 68 : 202 - 212
  • [26] Study of the miscibility of poly (lactic acid) / poly (butylene adipate-co-terephthalate) blends prepared by solvent-casting method
    Cobo, Fernanda Nardo
    de Santana, Henrique
    de Carvalho, Gizilene Maria
    Yamashita, Fabio
    MATERIA-RIO DE JANEIRO, 2021, 26 (02):
  • [27] Heat Treatment Effects on the Mechanical Properties and Morphologies of Poly (Lactic Acid)/Poly (Butylene Adipate-co-terephthalate) Blends
    Chiu, Hsien-Tang
    Huang, Szu-Yuan
    Chen, Yan-Fu
    Kuo, Ming-Tai
    Chiang, Tzong-Yiing
    Chang, Chi-Yung
    Wang, Yu-Hsiang
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2013, 2013
  • [28] Methodology development: evaluation of structural, thermal, and mechanical properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends for biodegradable mulch
    Rodriguez, Nikki
    Xing, Fangzhong
    Gillor, Osnat
    Guvendiren, Murat
    Axe, Lisa
    POLYMER BULLETIN, 2025, : 3685 - 3713
  • [29] Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly(lactic acid)
    Yu, Tao
    Li, Yan
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2014, 58 : 24 - 29
  • [30] Plasticization Effect of Poly(Lactic Acid) in the Poly(Butylene Adipate-co-Terephthalate) Blown Film for Tear Resistance Improvement
    Kim, Do Young
    Lee, Jae Bin
    Lee, Dong Yun
    Seo, Kwan Ho
    POLYMERS, 2020, 12 (09)