Low-Latency VR Video Processing-Transmitting System Based on Edge Computing

被引:1
作者
Gao, Nianzhen [1 ,2 ]
Zhou, Jiaxi [1 ,2 ]
Wan, Guoan [1 ,2 ]
Hua, Xinhai [3 ]
Bi, Ting [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Res Ctr 6G Mobile Commun, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] ZTE Corp, Dept Cloud Video Prod, Nanjing 210012, Peoples R China
基金
中国国家自然科学基金;
关键词
VR video; edge computing; multicast; resource allocation; bitrate decision; tile-based transmission; DESIGN;
D O I
10.1109/TBC.2024.3380455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The widespread use of live streaming necessitates low-latency requirements for the processing and transmission of virtual reality (VR) videos. This paper introduces a prototype system for low-latency VR video processing and transmission that exploits edge computing to harness the computational power of edge servers. This approach enables efficient video preprocessing and facilitates closer-to-user multicast video distribution. Despite edge computing's potential, managing large-scale access, addressing differentiated channel conditions, and accommodating diverse user viewports pose significant challenges for VR video transcoding and scheduling. To tackle these challenges, our system utilizes dual-edge servers for video transcoding and slicing, thereby markedly improving the viewing experience compared to traditional cloud-based systems. Additionally, we devise a low-complexity greedy algorithm for multi-edge and multi-user VR video offloading distribution, employing the results of bitrate decisions to guide video transcoding inversely. Simulation results reveal that our strategy significantly enhances system utility by 44.77 $\%$ over existing state-of-the-art schemes that do not utilize edge servers while reducing processing time by 58.54 %.
引用
收藏
页码:862 / 871
页数:10
相关论文
共 50 条
  • [31] UAV-Aided Low Latency Multi-Access Edge Computing
    Yu, Ye
    Bu, Xiangyuan
    Yang, Kai
    Yang, Hongyuan
    Gao, Xiaozheng
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (05) : 4955 - 4967
  • [32] Reliability-Optimal Offloading for Mobile Edge-Computing in Low-Latency Industrial IoT Networks
    Wang, Jie
    Hu, Yulin
    Zhu, Yao
    Wang, Tong
    Schmeink, Anke
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 12765 - 12781
  • [33] mVideo: Edge Computing Based Mobile Video Processing Systems
    Sun, Hui
    Yu, Ying
    Sha, Kewei
    Lou, Bendong
    IEEE ACCESS, 2020, 8 (08): : 11615 - 11623
  • [34] Deep reinforcement learning based edge computing for video processing
    Han, Seung-Yeop
    Lee, Hyang-Won
    ICT EXPRESS, 2023, 9 (03): : 433 - 438
  • [35] Distributed Edge Computing with Blockchain Technology to Enable Ultra-Reliable Low-Latency V2X Communications
    Vladyko, Andrei
    Elagin, Vasiliy
    Spirkina, Anastasia
    Muthanna, Ammar
    Ateya, Abdelhamied A.
    ELECTRONICS, 2022, 11 (02)
  • [36] Low-Latency Hierarchical Federated Learning in Wireless Edge Networks
    Su, Lina
    Zhou, Ruiting
    Wang, Ne
    Chen, Junmei
    Li, Zongpeng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6943 - 6960
  • [37] LEARNING-BASED LOW-LATENCY VIOT VIDEO STREAMING AGAINST JAMMING AND INTERFERENCE
    Xiao, Yilin
    Xiao, Liang
    Lv, Zefang
    Niu, Guohang
    Ding, Yuzhen
    Xu, Wenyuan
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (04) : 12 - 18
  • [38] A Multi-Market Trading Framework for Low-Latency Service Provision at the Edge of Networks
    Shih, Yuan-Yao
    Pang, Ai-Chun
    He, Tian
    Chiu, Te-Chuan
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (01) : 27 - 39
  • [39] Low-Latency Video Streaming With Congestion Control in Mobile Ad-Hoc Networks
    Greco, Claudio
    Cagnazzo, Marco
    Pesquet-Popescu, Beatrice
    IEEE TRANSACTIONS ON MULTIMEDIA, 2012, 14 (04) : 1337 - 1350
  • [40] Edge Cache-Assisted Secure Low-Latency Millimeter-Wave Transmission
    Hao, Wanming
    Zeng, Ming
    Sun, Gangcan
    Xiao, Pei
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (03) : 1815 - 1825