Fine-grained ship image classification and detection based on a vision transformer and multi-grain feature vector FPN model

被引:2
|
作者
Wang, Fengxiang [1 ]
Yu, Deying [2 ]
Huang, Liang [3 ]
Zhang, Yalun [4 ]
Chen, Yongbing [2 ]
Wang, Zhiguo [5 ]
机构
[1] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha, Peoples R China
[2] Naval Univ Engn, Sch Elect Engn, Wuhan, Peoples R China
[3] Naval Univ Engn, Coll Elect Engn, Wuhan, Peoples R China
[4] Peoples Liberat Army Naval Command Coll, Combat Command Dept, Nanjing, Peoples R China
[5] Naval Univ Engn, Dept Operat Res & Planning, Wuhan, Peoples R China
来源
GEO-SPATIAL INFORMATION SCIENCE | 2024年
基金
中国国家自然科学基金;
关键词
Deep learning; image classification; ship detection; remote-sensing images; transformer; REMOTE-SENSING IMAGES; NETWORK;
D O I
10.1080/10095020.2024.2331552
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In naval and civilian domains, meticulous ship classification and detection are paramount. Nevertheless, predominant research has gravitated toward leveraging Convolutional Neural Network (CNN)-centered methodologies, often overlooking the diverse granularity inherent in ship samples. In our pursuit to holistically extract features from ship images across varying granularities, we present a transformative architecture: the Vision Transformer and Multi-Grain Feature Vector Feature Pyramid Network (ViT-MGFV-FPN). This model synergistically melds the merits of MGFV-FPN with an augmented Vision Transformer (ViT) for a comprehensive image feature extraction. To cater to the extraction of broader image features whilst sidestepping the innate quadratic complexity of traditional ViT, we unveil an enhanced version christened the Global Swin Transformer. Concurrently, the MGFV-FPN is orchestrated to harness the prowess of CNNs in distilling intricate ship attributes. Rigorous empirical evaluations underscore our model's superiority in juxtaposition with extant CNN and transformer-based paradigms for nuanced ship categorization.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Complemental Attention Multi-Feature Fusion Network for Fine-Grained Classification
    Miao, Zhuang
    Zhao, Xun
    Wang, Jiabao
    Li, Yang
    Li, Hang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1983 - 1987
  • [42] A Broad Sparse Fine-Grained Image Classification Model Based on Dictionary Selection Strategy
    Zheng, Jianjie
    Liang, Pengpeng
    Zhao, Huimin
    Deng, Wu
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (01) : 576 - 588
  • [43] Fine-Grained Classification of Remote Sensing Ship Images Based on Improved VAN
    Zhou, Guoqing
    Huang, Liang
    Sun, Qiao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 1985 - 2007
  • [44] Application of Improved DNN Algorithm Based on Feature Fusion in Fine-Grained Image Recognition
    Zhu, Jiongguang
    Zhang, Wei
    IEEE ACCESS, 2024, 12 (32140-32151) : 32140 - 32151
  • [45] Learning to disentangle and fuse for fine-grained multi-modality ship image retrieval
    Xiong, Wei
    Xiong, Zhenyu
    Xu, Pingliang
    Cui, Yaqi
    Li, Haoran
    Huang, Linzhou
    Yang, Ruining
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [46] Fine-Grained Ship Detection in High-Resolution Satellite Images With Shape-Aware Feature Learning
    Guo, Bo
    Zhang, Ruixiang
    Guo, Haowen
    Yang, Wen
    Yu, Huai
    Zhang, Peng
    Zou, Tongyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 (1914-1926) : 1914 - 1926
  • [47] A model for fine-grained vehicle classification based on deep learning
    Yu, Shaoyong
    Wu, Yun
    Li, Wei
    Song, Zhijun
    Zeng, Wenhua
    NEUROCOMPUTING, 2017, 257 : 97 - 103
  • [48] Research on plant seeds recognition based on fine-grained image classification
    Yuan, Min
    Dong, Yongkang
    Lu, Fuxiang
    Zhan, Kun
    Zhu, Liye
    Shen, Jiacheng
    Ren, Dingbang
    Hu, Xiaowen
    Lv, Ningning
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [49] Fine-Grained Image Classification Network Based on Reinforcement and Complementary Learning
    Jing, Hu
    Meng-Yao, Wang
    Fei, Wang
    Ru-Min, Zhang
    Bing-Quan, Lian
    IEEE ACCESS, 2024, 12 : 28810 - 28817
  • [50] Fine-Grained Modulation Classification Using Multi-Scale Radio Transformer With Dual-Channel Representation
    Zheng, Qinghe
    Zhao, Penghui
    Wang, Hongjun
    Elhanashi, Abdussalam
    Saponara, Sergio
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (06) : 1298 - 1302