A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction

被引:6
作者
Xu, Jinhua [1 ,2 ]
Li, Yuran [1 ]
Lu, Wenbo [3 ]
Wu, Shuai [1 ]
Li, Yan [1 ]
机构
[1] Changan Univ, Sch Transportat Engn, Xian, Peoples R China
[2] Queensland Univ Technol QUT, Ctr Accid Res & Rd Safety Queensland CARRS Q, Kelvin Grove, Qld, Australia
[3] Southeast Univ, Sch Transportat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Heterogeneous graph; Spatio-temporal heterogeneity; Graph convolution network; Intelligent transportation systems; Smart city; NETWORK;
D O I
10.1016/j.physa.2024.129746
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Smart cities require advanced traffic management systems. Traffic forecasting is an essential task of the advanced transportation system. Traffic spatio-temporal data are often heterogeneous. Most existing traffic prediction models predominantly use separate components to extract the temporal and spatial features of traffic data. However, this overlooks the intrinsic connections between the spatio-temporal features of traffic data. To directly mine the spatio-temporal heterogeneity, this study constructs a global heterogeneous traffic spatio-temporal graph and proposes the Heterogeneous Traffic Spatio-Temporal Graph Convolution (HTSTGC). To reduce the complexity of the model, Simple Graph Convolution (SGC) is used to extract semi-structured meta-graph information. The receptive fields that capture temporal and spatial features can be flexibly adjusted separately through clever design, which can balance the performance and efficiency of the model. Finally, the feature fusion module applies Gated Graph Neural Network (GGNN) to fuse temporal and spatial features. The results on the PEMS datasets reveal that jointly modeling different types of relationships can improve the traffic prediction performance of the model. The proposed HTSTGC has better performance than the baseline methods in most cases. The research results can support urban traffic control, traffic pollution reduction, and sustainable urban development.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A heterogeneous two-layer graph convolution model for turning traffic prediction with missing data
    Xu, Jinhua
    Li, Xiaomeng
    Lu, Wenbo
    Wei, Xiaoxiao
    Chen, Guizhen
    Li, Yan
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2025, 13 (01)
  • [32] MSA-GCN: Multistage Spatio-Temporal Aggregation Graph Convolutional Networks for Traffic Flow Prediction
    Feng, Ji
    Huang, Jiashuang
    Guo, Chang
    Shi, Zhenquan
    MATHEMATICS, 2024, 12 (21)
  • [33] Knowledge Representation-Actuated Based Spatio-Temporal Graph Neural Network Traffic Flow Prediction
    Liu, Yihan
    Ning, Nianwen
    Lu, Ning
    Zhou, Yi
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 4528 - 4533
  • [34] A traffic speed prediction algorithm for dynamic spatio-temporal graph convolutional networks based on attention mechanism
    Chen, Hongwei
    Han, Hui
    Chen, Yifan
    Chen, Zexi
    Gao, Rong
    Li, Xia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [35] Adaptive Spatio-Temporal Relation Based Transformer for Traffic Flow Prediction
    Wang, Ruidong
    Xi, Liang
    Ye, Jinlin
    Zhang, Fengbin
    Yu, Xu
    Xu, Lingwei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2220 - 2230
  • [36] A spatio-temporal sequence-to-sequence network for traffic flow prediction
    Cao, Shuqin
    Wu, Libing
    Wu, Jia
    Wu, Dan
    Li, Qingan
    INFORMATION SCIENCES, 2022, 610 : 185 - 203
  • [37] Multivariate Spatio-temporal Cellular Traffic Prediction with Handover Based Clustering
    Tuna, Evren
    Soysal, Alkan
    2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 55 - 59
  • [38] Traffic Flow Prediction Based on Deep Spatio-Temporal Domain Adaptation
    Wang, Zhihui
    Li, Bingxin
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT II, DEXA 2024, 2024, 14911 : 110 - 115
  • [39] Traffic Flow Prediction Based on Dynamic Time Slot Graph Convolution
    Chen, Hongwei
    Wang, Han
    Chen, Zexi
    TRANSPORTATION RESEARCH RECORD, 2025,
  • [40] Spatial-temporal graph convolution network model with traffic fundamental diagram information informed for network traffic flow prediction
    Liu, Zhao
    Ding, Fan
    Dai, Yunqi
    Li, Linchao
    Chen, Tianyi
    Tan, Huachun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249