Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI

被引:3
作者
Consagra, William [1 ]
Ning, Lipeng [1 ]
Rathi, Yogesh [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Psychiat Neuroimaging Lab, 399 Revolut Dr, Boston, MA 02215 USA
关键词
Uncertainty quantification; Deep learning; Neural field; Diffusion MRI; Functional data analysis; MAGNETIC-RESONANCE DATA; TRACTOGRAPHY; NOISE; VALIDATION; VISUALIZATION; COMPLEX; PHANTOM;
D O I
10.1016/j.media.2024.103105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inferring brain connectivity and structure in -vivo requires accurate estimation of the orientation distribution function (ODF), which encodes key local tissue properties. However, estimating the ODF from diffusion MRI (dMRI) signals is a challenging inverse problem due to obstacles such as significant noise, high -dimensional parameter spaces, and sparse angular measurements. In this paper, we address these challenges by proposing a novel deep -learning based methodology for continuous estimation and uncertainty quantification of the spatially varying ODF field. We use a neural field (NF) to parameterize a random series representation of the latent ODFs, implicitly modeling the often ignored but valuable spatial correlation structures in the data, and thereby improving efficiency in sparse and noisy regimes. An analytic approximation to the posterior predictive distribution is derived which can be used to quantify the uncertainty in the ODF estimate at any spatial location, avoiding the need for expensive resampling-based approaches that are typically employed for this purpose. We present empirical evaluations on both synthetic and real in -vivo diffusion data, demonstrating the advantages of our method over existing approaches.
引用
收藏
页数:15
相关论文
共 75 条
[1]   Spatially variant noise estimation in MRI: A homomorphic approach [J].
Aja-Fernandez, Santiago ;
Pieciak, Tomasz ;
Vegas-Sanchez-Ferrero, Gonzalo .
MEDICAL IMAGE ANALYSIS, 2015, 20 (01) :184-197
[2]   Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes [J].
Andersson, Jesper L. R. ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2015, 122 :166-176
[3]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[4]  
2-O
[5]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[6]   Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS [J].
Becker, S. M. A. ;
Tabelow, K. ;
Mohammadi, S. ;
Weiskopf, N. ;
Polzehl, J. .
NEUROIMAGE, 2014, 95 :90-105
[7]   Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS) [J].
Becker, S. M. A. ;
Tabelow, K. ;
Voss, H. U. ;
Anwander, A. ;
Heidemann, R. M. ;
Polzehl, J. .
MEDICAL IMAGE ANALYSIS, 2012, 16 (06) :1142-1155
[8]   Probabilistic streamline q-ball tractography using the residual bootstrap [J].
Bermnan, Jeffrey I. ;
Chung, SungWon ;
Mukherjee, Pratik ;
Hess, Christopher P. ;
Han, Eric T. ;
Henry, Roland G. .
NEUROIMAGE, 2008, 39 (01) :215-222
[9]   Kernel regression estimation of fiber orientation mixtures in diffusion MRI [J].
Cabeen, Ryan P. ;
Bastin, Mark E. ;
Laidlaw, David H. .
NEUROIMAGE, 2016, 127 :158-172
[10]   Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space [J].
Chen, Geng ;
Dong, Bin ;
Zhang, Yong ;
Lin, Weili ;
Shen, Dinggang ;
Yap, Pew-Thian .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (12) :2838-2848