Moderate Deviations for the Parameter Estimation in the Fractional Ornstein-Uhlenbeck Process with H ∈ (0,1/2)

被引:0
|
作者
Jiang, Hui [1 ]
Yang, Qing-shan [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, MOE Key Lab Appl Stat, Changchun 130024, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2024年
基金
中国国家自然科学基金;
关键词
Cramer-type moderate deviation; fractional Ornstein-Uhlenbeck process; parameter estimation; multiple Wiener-Ito integrals; ESTIMATING DRIFT PARAMETERS; LEAST-SQUARES ESTIMATOR; CENTRAL LIMIT-THEOREMS; PROCESS DRIVEN; INEQUALITIES; VOLATILITY; INTEGRALS;
D O I
10.1007/s10255-024-1083-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic properties for estimators of two parameters in the drift function in the ergodic fractional Ornstein-Uhlenbeck process with Hurst index H is an element of (0,1/2). The Cramer-type moderate deviations, as well as the moderation deviations with explicit rate function can be obtained. The main methods consist of the deviation inequalities and Cramer-type moderate deviations for multiple Wiener-Ito integrals, as well as the asymptotic analysis techniques.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] STATISTICAL ANALYSIS OF THE MIXED FRACTIONAL ORNSTEIN-UHLENBECK PROCESS
    Chigansky, P.
    Kleptsyna, M.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 63 (03) : 408 - 425
  • [42] TIME-CHANGED FRACTIONAL ORNSTEIN-UHLENBECK PROCESS
    Ascione, Giacomo
    Mishura, Yuliya
    Pirozzi, Enrica
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 450 - 483
  • [43] Least squares estimator for the parameter of the fractional Ornstein-Uhlenbeck sheet
    Jorge Clarke De la Cerda
    Ciprian A. Tudor
    Journal of the Korean Statistical Society, 2012, 41 : 341 - 350
  • [44] Volatility estimation of general Gaussian Ornstein-Uhlenbeck process
    Yu, Qian
    Bajja, Salwa
    STATISTICS & PROBABILITY LETTERS, 2020, 163
  • [45] Convergence rate of CLT for the drift estimation of sub-fractional Ornstein-Uhlenbeck process of second kind
    Balde, Maoudo Faramba
    Es-Sebaiy, Khalifa
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2021, 8 (03): : 329 - 347
  • [46] Parameter least-squares estimation for time-inhomogeneous Ornstein-Uhlenbeck process
    Pramesti, Getut
    MONTE CARLO METHODS AND APPLICATIONS, 2023, 29 (01): : 1 - 32
  • [47] Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process
    Liang Shen
    Qingsong Xu
    Advances in Difference Equations, 2014
  • [48] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Giacomo Ascione
    Yuliya Mishura
    Enrica Pirozzi
    Methodology and Computing in Applied Probability, 2021, 23 : 53 - 84
  • [49] Least squares estimation for the Ornstein-Uhlenbeck process with small Hermite noise
    Araya, Hector
    Torres, Soledad
    Tudor, Ciprian A.
    STATISTICAL PAPERS, 2024, 65 (07) : 4745 - 4766
  • [50] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Ascione, Giacomo
    Mishura, Yuliya
    Pirozzi, Enrica
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2021, 23 (01) : 53 - 84