Structured prior distributions for the covariance matrix in latent factor models

被引:0
作者
Heaps, Sarah Elizabeth [1 ]
Jermyn, Ian Hyla [1 ]
机构
[1] Univ Durham, Dept Math Sci, Upper Mountjoy,Stockton Rd, Durham DH13LE, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Covariance matrix; Dimension reduction; Intraday gas demand; Latent factor models; Stationary dynamic factor models; Structured prior distributions; DYNAMIC FACTOR MODELS; STOCHASTIC VOLATILITY; COMPUTATION;
D O I
10.1007/s11222-024-10454-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Factor models are widely used for dimension reduction in the analysis of multivariate data. This is achieved through decomposition of a pxp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \times p$$\end{document} covariance matrix into the sum of two components. Through a latent factor representation, they can be interpreted as a diagonal matrix of idiosyncratic variances and a shared variation matrix, that is, the product of a pxk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \times k$$\end{document} factor loadings matrix and its transpose. If k << p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ll p$$\end{document}, this defines a parsimonious factorisation of the covariance matrix. Historically, little attention has been paid to incorporating prior information in Bayesian analyses using factor models where, at best, the prior for the factor loadings is order invariant. In this work, a class of structured priors is developed that can encode ideas of dependence structure about the shared variation matrix. The construction allows data-informed shrinkage towards sensible parametric structures while also facilitating inference over the number of factors. Using an unconstrained reparameterisation of stationary vector autoregressions, the methodology is extended to stationary dynamic factor models. For computational inference, parameter-expanded Markov chain Monte Carlo samplers are proposed, including an efficient adaptive Gibbs sampler. Two substantive applications showcase the scope of the methodology and its inferential benefits.
引用
收藏
页数:18
相关论文
共 49 条
[1]   Bayesian dynamic factor models and portfolio allocation [J].
Aguilar, O ;
West, M .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2000, 18 (03) :338-357
[2]   Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem [J].
Assmann, Christian ;
Boysen-Hogrefe, Jens ;
Pape, Markus .
JOURNAL OF ECONOMETRICS, 2016, 192 (01) :190-206
[3]   Generic global indentification in factor analysis [J].
Bekker, PA ;
tenBerge, JMF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 264 :255-263
[4]   Sparse Bayesian infinite factor models [J].
Bhattacharya, A. ;
Dunson, D. B. .
BIOMETRIKA, 2011, 98 (02) :291-306
[5]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[6]   High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics [J].
Carvalho, Carlos M. ;
Chang, Jeffrey ;
Lucas, Joseph E. ;
Nevins, Joseph R. ;
Wang, Quanli ;
West, Mike .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1438-1456
[7]   A MULTIVARIATE GAUSSIAN PROCESS FACTOR MODEL FOR HAND SHAPE DURING REACH-TO-GRASP MOVEMENTS [J].
Castellanos, Lucia ;
Vu, Vincent Q. ;
Perel, Sagi ;
Schwartz, Andrew B. ;
Kass, Robert E. .
STATISTICA SINICA, 2015, 25 (01) :5-24
[8]  
Chan Joshua C. C., 2009, International Journal of Mathematical Modelling and Numerical Optimisation, V1, P101, DOI 10.1504/IJMMNO.2009.030090
[9]   Invariant Inference and Efficient Computation in the Static Factor Model [J].
Chan, Joshua ;
Leon-Gonzalez, Roberto ;
Strachan, Rodney W. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) :819-828
[10]   Analysis of high dimensional multivariate stochastic volatility models [J].
Chib, Siddhartha ;
Nardari, Federico ;
Shephard, Neil .
JOURNAL OF ECONOMETRICS, 2006, 134 (02) :341-371