Autonomous UAV-Mounted LoRaWAN System for Real-Time Monitoring of Harmful Algal Blooms (HABs) and Water Quality

被引:15
作者
Hagh, Soheyl Faghir [1 ]
Amngostar, Parmida [1 ]
Zylka, Adam [2 ]
Zimmerman, Maddy [2 ]
Cresanti, Lauren [2 ]
Karins, Spencer [2 ]
O'Neil-Dunne, Jarlath Patrick [2 ]
Ritz, Koa [1 ]
Williams, Clayton J. [3 ]
Morales-Williams, Ana M. [2 ]
Huston, Dryver [4 ]
Xia, Tian [1 ]
机构
[1] Univ Vermont, Elect Engn Dept, Burlington, VT 05405 USA
[2] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA
[3] St Michaels Coll, Dept Environm Studies & Sci, Colchester, VT 05439 USA
[4] Univ Vermont, Mech Engn Dept, Burlington, VT 05405 USA
关键词
Algal blooms; ArcGIS database; blue-green algae; cyanobacteria; harmful algal blooms (HABs); imaging cameras; long-range wide area network (LoRaWAN); near-infrared (NIR) spectral camera; remote sensing; uncrewed aerial vehicles (UAVs); water sampling;
D O I
10.1109/JSEN.2024.3364142
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Harmful algal blooms (HABs) frequently occur in coastal and inland water bodies, resulting in detrimental health and economic consequences. In freshwater, HABs are often dominated by cyanobacteria (CyanoHABs or cHABs), which produce a suite of secondary metabolites ranging from taste and odor compounds to liver and neurological toxins. Recently, uncrewed aerial vehicles (UAVs) have emerged as a cost-effective remote sensing solution for using imaging cameras to monitor the distribution of HABs. However, most of these systems are unable to concurrently measure crucial water parameters, requiring additional in situ measurements and sample collection. The UAV system developed in this work presents a comprehensive platform that integrates multiple water sensors, including near-infrared (NIR) multispectral cameras and temperature, pH, and turbidity sensors. The integrated sensor system can not only monitor HAB distributions but also measure essential water quality parameters. In addition, the electromechanical 3-D-printed water sampling structure is designed to collect water samples for laboratory analysis of chemical and biological samples. To ensure real-time data transmission, a long-range wide area network (LoRaWAN) is developed. An ArcGIS database is implemented for water quality and HAB distribution mapping. Comprehensive field tests have been performed for system performance validation and assessment.
引用
收藏
页码:11414 / 11424
页数:11
相关论文
共 32 条
[1]   Marine harmful algal blooms (HABs) in the United States: History, current status and future trends [J].
Anderson, Donald M. ;
Fensin, Elizabeth ;
Gobler, Christopher J. ;
Hoeglund, Alicia E. ;
Hubbard, Katherine A. ;
Kulis, David M. ;
Landsberg, Jan H. ;
Lefebvre, Kathi A. ;
Provoost, Pieter ;
Richlen, Mindy L. ;
Smith, Juliette L. ;
Solow, Andrew R. ;
Trainer, Vera L. .
HARMFUL ALGAE, 2021, 102
[2]   Unmanned aerial system based spectroradiometer for monitoring harmful algal blooms: A new paradigm in water quality monitoring [J].
Becker, Richard H. ;
Sayers, Michael ;
Dehm, Dustin ;
Shuchman, Robert ;
Quintero, Kaydian ;
Bosse, Karl ;
Sawtell, Reid .
JOURNAL OF GREAT LAKES RESEARCH, 2019, 45 (03) :444-453
[3]  
Buhler R., 2023, 3DPrinterSTLFiles
[4]   Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System [J].
Cadondon, Jumar G. ;
Ong, Prane Mariel B. ;
Vallar, Edgar A. ;
Shiina, Tatsuo ;
Galvez, Maria Cecilia D. .
SENSORS, 2022, 22 (08)
[5]   Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis) [J].
Carvalho, Gustavo A. ;
Minnett, Peter J. ;
Fleming, Lora E. ;
Banzon, Viva F. ;
Baringer, Warner .
HARMFUL ALGAE, 2010, 9 (05) :440-448
[6]   Climate Change Impacts on Harmful Algal Blooms in US Freshwaters: A Screening-Level Assessment [J].
Chapra, Steven C. ;
Boehlert, Brent ;
Fant, Charles ;
Bierman, Victor J., Jr. ;
Henderson, Jim ;
Mills, David ;
Mas, Diane M. L. ;
Rennels, Lisa ;
Jantarasami, Lesley ;
Martinich, Jeremy ;
Strzepek, Kenneth M. ;
Paerl, Hans W. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (16) :8933-8943
[7]   Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs) [J].
Cheng, K. H. ;
Chan, S. N. ;
Lee, Joseph H. W. .
MARINE POLLUTION BULLETIN, 2020, 152
[8]  
Grieco L. A., 2020, PROC 19 INT C AD HO, P4
[9]   Sedimentary DNA and pigments show increasing abundance and toxicity of cyanoHABs during the Anthropocene [J].
Heathcote, Adam J. ;
Taranu, Zofia E. ;
Tromas, Nicolas ;
MacIntyre-Newell, Meaghan ;
Leavitt, Peter R. ;
Pick, Frances R. .
FRESHWATER BIOLOGY, 2023, 68 (11) :1859-1874
[10]   Monitoring the vertical distribution of HABs using hyperspectral imagery and deep learning models [J].
Hong, Seok Min ;
Baek, Sang-Soo ;
Yun, Daeun ;
Kwon, Yong-Hwan ;
Duan, Hongtao ;
Pyo, JongCheol ;
Cho, Kyung Hwa .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 794