On Real Hypersurfaces in S2×S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^2\times {\mathbb {S}}^2$$\end{document} and H2×H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^2\times {\mathbb {H}}^2$$\end{document} with Parallel Normal Jacobi Operator

被引:0
作者
Zejun Hu [1 ]
Xiaoge Lu [1 ]
机构
[1] Zhengzhou University,School of Mathematics and Statistics
关键词
Parallel real hypersurface; normal Jacobi operator; and ; Levi-Civita connection; -generalized Tanaka–Webster connection; 53B25; 53B35; 53C42;
D O I
10.1007/s00009-024-02674-5
中图分类号
学科分类号
摘要
In this paper, we study real hypersurfaces of the two Kähler surfaces S2×S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^2\times {\mathbb {S}}^2$$\end{document} and H2×H2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^2\times {\mathbb {H}}^2.$$\end{document} As the main results, amongst others, we classify all such hypersurfaces whose normal Jacobi operators are parallel with respect to either the Levi-Civita connection or the k-generalized Tanaka–Webster connection.
引用
收藏
相关论文
共 17 条
  • [1] Berndt J(1991)Real hypersurfaces in quaternionic space forms J. Reine Angew. Math. 419 9-26
  • [2] Cho JT(1999)CR structures on real hypersurfaces of a complex space form Publ. Math. Debr. 54 473-487
  • [3] Cho JT(2006)Levi-parallel hypersurfaces in a complex space form Tsukuba J. Math. 30 329-343
  • [4] Cho JT(2011)The Tanaka–Webster connection and real hypersurfaces in a complex space form Kodai Math. J. 34 474-484
  • [5] Kon M(2022)On real hypersurfaces of Proc. Am. Math. Soc. 150 4447-4461
  • [6] Gao D(2024)On hypersurfaces of Sci. China Math. 67 339-366
  • [7] Hu ZJ(2012)Curvature-adapted submanifolds of symmetric spaces Indiana Univ. Math. J. 61 831-847
  • [8] Ma H(2017)Real hypersurfaces in the complex quadric with parallel normal Jacobi operator Math. Nachr. 290 442-451
  • [9] Yao ZK(1989)Variational problems on contact Riemannian manifolds Trans. Am. Math. Soc. 314 349-379
  • [10] Gao D(2019)On hypersurfaces of Commun. Anal. Geom. 27 1381-1416