Gp-Mood: A Positive-Preserving High-Order Finite Volume Method for Hyperbolic Conservation Laws

被引:0
|
作者
Bourgeois, Rémi [1 ,2 ,3 ]
Lee, Dongwook [1 ]
机构
[1] Department of Applied Mathematics, The University of California, Santa Cruz,CA, United States
[2] Bordeaux INP, Enseirb-Matmeca, France
[3] Maison de la Simulation, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
来源
SSRN | 2022年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Finite volume method
引用
收藏
相关论文
共 50 条
  • [1] GP-MOOD: A positivity-preserving high-order finite volume method for hyperbolic conservation laws
    Bourgeois, Remi
    Lee, Dongwook
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [2] A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD)
    Clain, S.
    Diot, S.
    Loubere, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 4028 - 4050
  • [3] A high-order monotonicity-preserving scheme for hyperbolic conservation laws
    Capdeville, G.
    COMPUTERS & FLUIDS, 2017, 144 : 86 - 116
  • [4] On the arithmetic intensity of high-order finite-volume discretizations for hyperbolic systems of conservation laws
    Loffeld, J.
    Hittinger, J. A. F.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2019, 33 (01): : 25 - 52
  • [5] High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids
    McCorquodale, P.
    Dorr, M. R.
    Hittinger, J. A. F.
    Colella, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 288 : 181 - 195
  • [6] A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS
    McCorquodale, Peter
    Colella, Phillip
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2011, 6 (01) : 1 - 25
  • [7] A Class of New High-order Finite-Volume TENO Schemes for Hyperbolic Conservation Laws with Unstructured Meshes
    Zhe Ji
    Tian Liang
    Lin Fu
    Journal of Scientific Computing, 2022, 92
  • [8] A class of new high-order finite-volume TENO schemes for hyperbolic conservation laws with unstructured meshes
    Ji, Zhe
    Liang, Tian
    Fu, Lin
    arXiv, 2021,
  • [9] A Class of New High-order Finite-Volume TENO Schemes for Hyperbolic Conservation Laws with Unstructured Meshes
    Ji, Zhe
    Liang, Tian
    Fu, Lin
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)
  • [10] A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws
    Loubere, Raphael
    Dumbser, Michael
    Diot, Steven
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 16 (03) : 718 - 763