Magnetic CuFe2O4 nanoparticles immobilized on mesoporous alumina as highly efficient peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride

被引:4
作者
Li, Qingyong [1 ]
Zhang, Jiayao [1 ]
Xu, Jiahui [1 ]
Cheng, Yunran [1 ]
Yang, Xiaoting [1 ]
He, Jiawen [1 ]
Liu, Yujun [1 ]
Chen, Jiayi [1 ]
Qiu, Bing [1 ]
Zhong, Yongming [1 ]
Sun, Rongrong [1 ]
机构
[1] Guangdong Univ Petrochem Technol, Sch Environm Sci & Engn, Maoming 525000, Guangdong, Peoples R China
关键词
Fe-O-Al bond; Peroxymonosulfate; Tetracycline hydrochloride; ADVANCED OXIDATION; CATALYTIC-ACTIVITY; ANTIBIOTICS; KAOLINITE; MECHANISM; KINETICS; PATHWAY; OXIDES; WATER;
D O I
10.1016/j.seppur.2024.127076
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanoscaled magnetic copper ferrite (CuFe2O4) is widely used as a peroxymonosulfate (PMS) activator but suffers from agglomeration owing to its inherent magnetic properties and high surface energy. In this work, spinel structured CuFe2O4 anchored on mesoporous alumina (denoted as CFO@AO) were synthesized, characterized, and applied as a PMS activator for the removal of tetracycline hydrochloride (TC center dot HCl). Approximately 97.5 % of TC center dot HCl was decomposed within 10 min in 30 %-CFO@AO (0.2 g/L)/PMS (0.3 g/L) system, and the corresponding kinetic rate constant of 30 %-CFO@AO/PMS (0.417 min - 1) was around 1.57 times higher than that of CuFe2O4/PMS (0.266 min - 1), which indicating that the existence of synergistic catalysis between CuFe2O4 and Al2O3 enhanced the degradation of TC center dot HCl. Moreover, nano -sized CuFe2O4 were successfully anchored on the surface of Al2O3 because of Fe-O-Al bond, which could account for the enhanced catalytic activity, superior pH flexibility, and high chemical stability and reusability of 30 %-CFO@AO. Quenching experimentals, electron paramagnetic resonance, and methyl phenyl sulfoxide (PMSO) chemical probe assays confirmed that both radical oxidation (center dot OH) and non -radical oxidation (1O2 and Fe(IV)--O) were proposed in the developed CFO@AO/PMS system, and center dot OH played a key role in the process. Meanwhile, the PMS activation mechanism by CFO@AO composite was also analyzed based on the results of adsorption energy, which was calculated via DFT. Based on UPLC-MS technique, a possible degradation pathway for TC center dot HCl destruction in 30 %-CFO@AO/PMS system was proposed. The toxicity assessment showed that the catalytic degradation of TC center dot HCl in 30 %-CFO@AO/PMS system reduced the toxicity of most of degradation intermediates. Present work proved that CuFe2O4@Al2O3 composite is an efficient, environment -friendly, and recyclable heterogeneous catalyst for practical wastewater treatment via PMS activation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Efficacy and mechanism of activation peroxymonosulfate for tetracycline degradation by AC-MIL-101(Fe)-derived magnetic CuO/Fe2O3/CuFe2O4
    Zheng, Haoyuan
    Mo, Qianyuan
    Zhang, Xi
    Huang, Jie
    Sheng, Guishang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 701
  • [32] Efficient degradation of ciprofloxacin in wastewater by CuFe2O4/CuS photocatalyst activated peroxynomosulfate
    Jia, Xinyu
    Zhang, Jinhui
    Huang, Qinglin
    Xiong, Chunyu
    Ji, Haixia
    Ren, Qifang
    Jin, Zhen
    Chen, Shaohua
    Guo, Wanmi
    Chen, Jing
    Ge, Yao
    Ding, Yi
    ENVIRONMENTAL RESEARCH, 2024, 241
  • [33] Tween modified CuFe2O4 nanoparticles with enhanced supercapacitor performance
    Guo, Yan
    Chen, Yifang
    Hu, Xiaoxi
    Yao, Yuan
    Li, Zhuang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 631
  • [34] Catalytic potential of CuFe2O4/GO for activation of peroxymonosulfate in metronidazole degradation: study of mechanisms
    Roghayeh Noroozi
    Mitra Gholami
    Mahdi Farzadkia
    Ahmad Jonidi Jafari
    Journal of Environmental Health Science and Engineering, 2020, 18 : 947 - 960
  • [35] Quartz sand@PDA/Co-Mn-ZIF as efficient peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride in aqueous solutions
    Li, Simin
    Chang, Ziran
    Tang, Fengbing
    Sui, Tianshuo
    Li, Lemin
    Mu, Jingbo
    Shi, Zhennan
    CHEMICAL PHYSICS LETTERS, 2025, 870
  • [36] CuFe2O4/diatomite actuates peroxymonosulfate activation process: Mechanism for active species transformation and pesticide degradation
    Xu, Peng
    Wei, Rui
    Wang, Peng
    Li, Xiang
    Yang, Chunyan
    Shen, Tianyao
    Zheng, Tong
    Zhang, Guangshan
    WATER RESEARCH, 2023, 235
  • [37] Significantly enhanced activation of peroxymonosulfate by a graphene-supported BiFeO3 composites for highly efficient degradation of tetracycline hydrochloride
    Ma, Jingwen
    Xing, Hongjie
    Zhang, Jingji
    Zong, Quan
    Du, Huiwei
    Chen, Junfu
    Wang, Jiangying
    SOLID STATE SCIENCES, 2023, 139
  • [38] Construction of Z-scheme CuFe2O4/MnO2 photocatalyst and activating peroxymonosulfate for phenol degradation: Synergistic effect, degradation pathways, and mechanism
    Liu, Xianjie
    Zhou, Jiabin
    Liu, Dan
    Li, Ling
    Liu, Wenbo
    Liu, Su
    Feng, Choujing
    ENVIRONMENTAL RESEARCH, 2021, 200
  • [39] Efficient moxifloxacin degradation by CoFe2O4 magnetic nanoparticles activated peroxymonosulfate: Kinetics, pathways and mechanisms
    Liu, Lili
    Mi, Haosheng
    Zhang, Meng
    Sun, Feifei
    Zhan, Rui
    Zhao, Hanbin
    He, Siqi
    Zhou, Lei
    CHEMICAL ENGINEERING JOURNAL, 2021, 407
  • [40] Facile Synthesis of Mesoporous La-Doped CuFe2O4 Nanoparticles as Magnetic Adsorbents for Phosphate Removal
    Dang, Tien Thi Thuy
    Tieu, Minh Toan
    Ngo, Duc Toan
    Nguyen, Quoc Thiet
    Le, Tien Khoa
    CHEMISTRYSELECT, 2025, 10 (11):