Magnetic CuFe2O4 nanoparticles immobilized on mesoporous alumina as highly efficient peroxymonosulfate activator for enhanced degradation of tetracycline hydrochloride

被引:4
|
作者
Li, Qingyong [1 ]
Zhang, Jiayao [1 ]
Xu, Jiahui [1 ]
Cheng, Yunran [1 ]
Yang, Xiaoting [1 ]
He, Jiawen [1 ]
Liu, Yujun [1 ]
Chen, Jiayi [1 ]
Qiu, Bing [1 ]
Zhong, Yongming [1 ]
Sun, Rongrong [1 ]
机构
[1] Guangdong Univ Petrochem Technol, Sch Environm Sci & Engn, Maoming 525000, Guangdong, Peoples R China
关键词
Fe-O-Al bond; Peroxymonosulfate; Tetracycline hydrochloride; ADVANCED OXIDATION; CATALYTIC-ACTIVITY; ANTIBIOTICS; KAOLINITE; MECHANISM; KINETICS; PATHWAY; OXIDES; WATER;
D O I
10.1016/j.seppur.2024.127076
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanoscaled magnetic copper ferrite (CuFe2O4) is widely used as a peroxymonosulfate (PMS) activator but suffers from agglomeration owing to its inherent magnetic properties and high surface energy. In this work, spinel structured CuFe2O4 anchored on mesoporous alumina (denoted as CFO@AO) were synthesized, characterized, and applied as a PMS activator for the removal of tetracycline hydrochloride (TC center dot HCl). Approximately 97.5 % of TC center dot HCl was decomposed within 10 min in 30 %-CFO@AO (0.2 g/L)/PMS (0.3 g/L) system, and the corresponding kinetic rate constant of 30 %-CFO@AO/PMS (0.417 min - 1) was around 1.57 times higher than that of CuFe2O4/PMS (0.266 min - 1), which indicating that the existence of synergistic catalysis between CuFe2O4 and Al2O3 enhanced the degradation of TC center dot HCl. Moreover, nano -sized CuFe2O4 were successfully anchored on the surface of Al2O3 because of Fe-O-Al bond, which could account for the enhanced catalytic activity, superior pH flexibility, and high chemical stability and reusability of 30 %-CFO@AO. Quenching experimentals, electron paramagnetic resonance, and methyl phenyl sulfoxide (PMSO) chemical probe assays confirmed that both radical oxidation (center dot OH) and non -radical oxidation (1O2 and Fe(IV)--O) were proposed in the developed CFO@AO/PMS system, and center dot OH played a key role in the process. Meanwhile, the PMS activation mechanism by CFO@AO composite was also analyzed based on the results of adsorption energy, which was calculated via DFT. Based on UPLC-MS technique, a possible degradation pathway for TC center dot HCl destruction in 30 %-CFO@AO/PMS system was proposed. The toxicity assessment showed that the catalytic degradation of TC center dot HCl in 30 %-CFO@AO/PMS system reduced the toxicity of most of degradation intermediates. Present work proved that CuFe2O4@Al2O3 composite is an efficient, environment -friendly, and recyclable heterogeneous catalyst for practical wastewater treatment via PMS activation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin
    Wang, Yuru
    Tian, Dongfan
    Chu, Wei
    Li, Minrui
    Lu, Xinwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 212 : 536 - 544
  • [2] Efficient visible light–induced photocatalytic degradation of tetracycline hydrochloride using CuFe2O4 and PANI/CuFe2O4 nanohybrids
    Shayista Gaffar
    Amit Kumar
    Javed Alam
    Ufana Riaz
    Environmental Science and Pollution Research, 2023, 30 : 108878 - 108888
  • [3] Efficient degradation of tetracycline hydrochloride by activated peroxymonosulfate with PdO/CuFe2O4/coal-bearing strata kaolinite composite
    Zhu, Lei
    Song, Wei
    Liu, Chengyong
    Gu, Wenzhe
    Zhao, Mengye
    Zhao, Yunpu
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 187
  • [4] Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation
    Dong, Xiongbo
    Ren, Bangxing
    Sun, Zhiming
    Li, Chunquan
    Zhang, Xiangwei
    Kong, Minghao
    Zheng, Shuilin
    Dionysiou, Dionysios D.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 253 : 206 - 217
  • [5] Efficient visible light-induced photocatalytic degradation of tetracycline hydrochloride using CuFe2O4 and PANI/CuFe2O4 nanohybrids
    Gaffar, Shayista
    Kumar, Amit
    Alam, Javed
    Riaz, Ufana
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (50) : 108878 - 108888
  • [6] Oxygen-vacancies rich CuFe2O4 catalyst as efficient peroxymonosulfate activator for enhanced oxytetracycline degradation: Performance and mechanism
    Deng, Tian
    He, Haonan
    Zeng, Li
    Wang, Hongbin
    Zou, Qinghua
    Gong, Xiaobo
    Sun, Mingchao
    Liu, Yong
    Zhao, Junfeng
    CHEMICAL ENGINEERING SCIENCE, 2024, 291
  • [7] Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation
    Ye, Peng
    Wu, Deming
    Wang, Manye
    Wei, Yi
    Xu, Aihua
    Li, Xiaoxia
    APPLIED SURFACE SCIENCE, 2018, 428 : 131 - 139
  • [8] Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A
    Chen, Zhiqiang
    Wang, Luyao
    Xu, Haodan
    Wen, Qinxue
    CHEMICAL ENGINEERING JOURNAL, 2020, 389
  • [9] CuFe2O4 supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation
    Cao, Xiao-qiang
    Xiao, Fei
    Lyu, Zhi-wen
    Xie, Xiao-yu
    Zhang, Zhi-xing
    Dong, Xing
    Wang, Jun-xiang
    Lyu, Xian-jun
    Zhang, Yi-zhen
    Liang, Yue
    JOURNAL OF WATER PROCESS ENGINEERING, 2021, 44
  • [10] Fabrication of Cu0-composited CuFe2O4 magnetic nanoparticles on diatomite support for efficient degradation of tetracycline hydrochloride by a Fenton-like system
    Deng, Shuai
    Guo, Zhi
    Chen, Yi -Han
    Cui, Kang-Ping
    Ding, Zhao -Gang
    Wang, Bei
    Weerasooriya, Rohan
    Chen, Xing
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):