A Unified Label Noise-Tolerant Framework of Deep Learning-Based Fault Diagnosis via a Bounded Neural Network

被引:8
|
作者
He, Sudao [1 ,2 ]
Ao, Wai Kei [1 ,2 ]
Ni, Yi-Qing [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Natl Rail Transit Electrificat & Automat Engn Tech, Hong Kong Branch, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
关键词
Fault diagnosis; Training; Data models; Task analysis; Feature extraction; Adaptation models; Deep learning; Bounded neural network (BNN); high-speed train (HST); label noise tolerance; optical fiber sensor; structural fault diagnosis (FD); HIGH-SPEED TRAIN;
D O I
10.1109/TIM.2024.3374322
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Supervised fault diagnosis (FD) in mechanical systems, particularly in high-speed train (HST) components, faces significant challenges due to the presence of label noise in annotating large-scale monitoring data. This label noise introduces strict requirements for label noise tolerance and the learning capabilities of FD algorithms. This article presents a unified framework for label noise FD in HST components using a bounded neural network (BNN) to address this issue. The proposed framework consists of multiple basic models with shared weights, enabling the learning of global knowledge across sensor nodes and facilitating the estimation of local states to adapt to dynamic measurement networks. The BNN-based basic model incorporates implicit weighted learning and bounded loss mechanisms, which extract valuable insights from misannotated data. In addition, a tighter bound of loss is introduced, providing theoretical proof and enhancing the label noise tolerance of the BNN. A surrogate training strategy based on an alternative convex search (ACS) is established to ensure the stability of the BNN model during the early training stage. This strategy mitigates the risk of failure in the initial training phase of the BNN model. The feasibility and effectiveness of the proposed method are demonstrated through a real-field test conducted on a mechanical system of an HST component. The code is released on https://github.com/sudao-he/Bounded_Neural_Network.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [31] Fault diagnosis for vehicle air conditioning blower using deep learning neural network
    Wu, Jian-Da
    Ke, Jun-Yuan
    Shih, Fan-Yu
    Shyr, Wen-Jye
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2022, 41 (03) : 910 - 925
  • [32] A deep reinforcement learning-based intelligent fault diagnosis framework for rolling bearings under imbalanced datasets
    Li, Yonghua
    Wang, Yipeng
    Zhao, Xing
    Chen, Zhe
    CONTROL ENGINEERING PRACTICE, 2024, 145
  • [33] Power Grid Fault Diagnosis Based on Deep Pyramid Convolutional Neural Network
    Zhang, Xu
    Zhang, Huiting
    Zhang, Dongying
    Wang, Yixian
    Ding, Ruiting
    Zheng, Yuchuan
    Zhang, Yongxu
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (06): : 2188 - 2203
  • [34] A Weakly Supervised Learning-Based Oversampling Framework for Class-Imbalanced Fault Diagnosis
    Qian, Min
    Li, Yan-Fu
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (01) : 429 - 442
  • [35] Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network
    Jiang, Peng
    Hu, Zhixin
    Liu, Jun
    Yu, Shanen
    Wu, Feng
    SENSORS, 2016, 16 (10)
  • [36] Blockchain and Deep Learning-Based Fault Detection Framework for Electric Vehicles
    Trivedi, Mihir
    Kakkar, Riya
    Gupta, Rajesh
    Agrawal, Smita
    Tanwar, Sudeep
    Niculescu, Violeta-Carolina
    Raboaca, Maria Simona
    Alqahtani, Fayez
    Saad, Aldosary
    Tolba, Amr
    MATHEMATICS, 2022, 10 (19)
  • [37] Exceeding the limit for microscopic image translation with a deep learning-based unified framework
    Dai, Weixing
    Wong, Ivy H. M.
    Wong, Terence T. W.
    PNAS NEXUS, 2024, 3 (04):
  • [38] Convolutional Neural Network Based Two-Layer Transfer Learning for Bearing Fault Diagnosis
    Zhang, Wanpeng
    Zhang, Peng
    He, Xiaohan
    Zhang, Dailin
    IEEE ACCESS, 2022, 10 : 109779 - 109794
  • [39] Fault Diagnosis Based On One-Dimensional Deep Convolution Neural Network
    Yang Yinghua
    Li Doliang
    Liu Xiaozhi
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 5630 - 5635
  • [40] A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
    Ma, Shangjun
    Cai, Wei
    Liu, Wenkai
    Shang, Zhaowei
    Liu, Geng
    SENSORS, 2019, 19 (10)