Imaging at the nexus: how state of the art imaging techniques can enhance our understanding of cancer and fibrosis

被引:1
作者
Baniasadi, Alireza [1 ]
Das, Jeeban P. [2 ]
Prendergast, Conor M. [1 ]
Beizavi, Zahra [1 ]
Ma, Hong Y. [1 ]
Jaber, Muhammad Yaman [3 ]
Capaccione, Kathleen M. [1 ]
机构
[1] Columbia Univ, Dept Radiol, Irving Med Ctr, 622 W 168Th St, New York, NY 10032 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USA
[3] Damascus Univ, Dept Radiol, Damascus, Syria
基金
英国科研创新办公室;
关键词
Cancer; Fibrosis; Imaging techniques; Diagnosis; Tumor microenvironment; NONSMALL CELL LUNG; IDIOPATHIC PULMONARY-FIBROSIS; POSITRON-EMISSION-TOMOGRAPHY; PROSTATE-CANCER; BREAST-CANCER; HEPATOCELLULAR-CARCINOMA; 2ND-HARMONIC MICROSCOPY; ARTIFICIAL-INTELLIGENCE; MYOCARDIAL-PERFUSION; C-11-CHOLINE PET/CT;
D O I
10.1186/s12967-024-05379-1
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.
引用
收藏
页数:23
相关论文
共 239 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]   Idiopathic pulmonary fibrosis and lung cancer: future directions and challenges [J].
Abu Qubo, Ahmad ;
Numan, Jamil ;
Snijder, Juan ;
Padilla, Maria ;
Austin, John H. M. ;
Capaccione, Kathleen M. ;
Pernia, Monica ;
Bustamante, Jean ;
O'Connor, Timothy ;
Salvatore, Mary M. .
BREATHE, 2022, 18 (04)
[3]   Predictive value of 18F-FDG PET/CT for acute exacerbation of interstitial lung disease in patients with lung cancer and interstitial lung disease treated with chemotherapy [J].
Akaike, Kimitaka ;
Saruwatari, Koichi ;
Oda, Seitaro ;
Shiraishi, Shinya ;
Takahashi, Hiroshi ;
Hamada, Shohei ;
Iyama, Shinji ;
Horio, Yuko ;
Tomita, Yusuke ;
Saeki, Sho ;
Okamoto, Shinichiro ;
Ichiyasu, Hidenori ;
Fujii, Kazuhiko ;
Sakagami, Takuro .
INTERNATIONAL JOURNAL OF CLINICAL ONCOLOGY, 2020, 25 (04) :681-690
[4]   Clinical value of 3'-deoxy-3'-[18F]fluorothymidine-positron emission tomography for diagnosis, staging and assessing therapy response in lung cancer [J].
Alwadani, Bandar ;
Dall'Angelo, Sergio ;
Fleming, Ian N. .
INSIGHTS INTO IMAGING, 2021, 12 (01)
[5]   The Role of Radiomics in Fibrosis Crohn's Disease: A Review [J].
Alyami, Ali S. .
DIAGNOSTICS, 2023, 13 (09)
[6]   Copper-64 Radiopharmaceuticals for PET Imaging of Cancer: Advances in Preclinical and Clinical Research [J].
Anderson, Carolyn J. ;
Ferdani, Riccardo .
CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS, 2009, 24 (04) :379-393
[7]   Quantitative chest computed tomography is associated with two prediction models of mortality in interstitial lung disease related to systemic sclerosis [J].
Ariani, Alarico ;
Silva, Mario ;
Seletti, Valeria ;
Bravi, Elena ;
Saracco, Marta ;
Parisi, Simone ;
De Gennaro, Fabio ;
Idolazzi, Luca ;
Caramaschi, Paola ;
Benini, Camilla ;
Bodini, Flavio Cesare ;
Scire, Carlo Alberto ;
Carrara, Greta ;
Lumetti, Federica ;
Alfieri, Veronica ;
Bonati, Elisa ;
Lucchini, Gianluca ;
Aiello, Marina ;
Santilli, Daniele ;
Mozzani, Flavio ;
Imberti, Davide ;
Michieletti, Emanuele ;
Arrigoni, Eugenio ;
Delsante, Giovanni ;
Pellerito, Raffaele ;
Fusaro, Enrico ;
Chetta, Alfredo ;
Sverzellati, Nicola .
RHEUMATOLOGY, 2017, 56 (06) :922-927
[8]   Exploratory Clinical Trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for Imaging xC Transporter Using Positron Emission Tomography in Patients with Non-Small Cell Lung or Breast Cancer [J].
Baek, Sora ;
Choi, Chang-Min ;
Ahn, Sei Hyun ;
Lee, Jong Won ;
Gong, Gyungyub ;
Ryu, Jin-Sook ;
Oh, Seung Jun ;
Bacher-Stier, Claudia ;
Fels, Lueder ;
Koglin, Norman ;
Hultsch, Christina ;
Schatz, Christoph A. ;
Dinkelborg, Ludger M. ;
Mittra, Erik S. ;
Gambhir, Sanjiv S. ;
Moon, Dae Hyuk .
CLINICAL CANCER RESEARCH, 2012, 18 (19) :5427-5437
[9]   Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases [J].
Bakrania, Anita ;
Joshi, Narottam ;
Zhao, Xun ;
Zheng, Gang ;
Bhat, Mamatha .
PHARMACOLOGICAL RESEARCH, 2023, 189
[10]   68Ga-PSMA-11 PET/CT in newly diagnosed prostate cancer: diagnostic sensitivity and interobserver agreement [J].
Basha, Mohammad Abd Alkhalik ;
Hamed, Maged Abdel Galil ;
Hussein, Omar ;
El-Diasty, Tarek ;
Abdelkhalek, Yasser Ibrahim ;
Hussein, Yehia Omar ;
Alasamer, Ahmed Fathy ;
Mohamed, Heba A. E. ;
El Deen, Dalia Salah ;
Tantawy, Engy Fathy ;
Metwally, Maha Ibrahim ;
Zaitoun, Mohamed M. A. ;
Aly, Sameh Abdelaziz ;
Altohamy, Jehan Ibrahim ;
Mohamed, Abd El Motaleb ;
Afifi, Amira Hamed Mohamed ;
Harb, Ola .
ABDOMINAL RADIOLOGY, 2019, 44 (07) :2545-2556