Extraction of vegetation disturbance range using aboveground biomass estimated from Sentinel-2 imagery in coal mining areas with high groundwater table

被引:0
|
作者
Jiang, Kegui [1 ]
Yang, Keming [1 ]
Dong, Xianglin [2 ]
Chen, Xinyang [1 ]
Peng, Lishun [1 ]
Gu, Xinru [1 ]
机构
[1] College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing,100083, China
[2] General Defense Geological Survey Department, Huaibei Mining Co., Ltd., Huaibei,235000, China
关键词
Compendex;
D O I
10.1007/s11356-024-34456-7
中图分类号
学科分类号
摘要
Biomass - Coal - Coal deposits - Coal mines - Curve fitting - Cutting machines (mining) - Ecology - Groundwater - Groundwater resources - Learning algorithms - Mining - Normal distribution - Remote sensing - Subsidence - Vegetation
引用
收藏
页码:49227 / 49243
页数:16
相关论文
共 45 条
  • [41] Automatic extraction of build-up areas from bare land using Sentinel 2A imagery in El Khroub city, Algeria
    Tabet A.A.
    Abdaoui G.R.
    Layeb H.
    Bulletin de la Societe Royale des Sciences de Liege, 2023, 92 (01): : 1 - 22
  • [42] Response and prediction of ecosystem service values to land use change resulting from underground coal mining in high groundwater table areas: A case study of Jining City, China
    Fu, Hao
    Chai, Bo
    Jin, Chun
    Kang, Hongyuan
    Zhang, Yan
    Tan, Xiuquan
    Wang, Wei
    ENVIRONMENTAL AND SUSTAINABILITY INDICATORS, 2024, 23
  • [43] Machine Learning and the End of Atmospheric Corrections: A Comparison between High-Resolution Sea Surface Salinity in Coastal Areas from Top and Bottom of Atmosphere Sentinel-2 Imagery
    Medina-Lopez, Encarni
    REMOTE SENSING, 2020, 12 (18)
  • [44] Towards Predictive Modeling of Sorghum Biomass Yields Using Fraction of Absorbed Photosynthetically Active Radiation Derived from Sentinel-2 Satellite Imagery and Supervised Machine Learning Techniques
    Habyarimana, Ephrem
    Piccard, Isabelle
    Catellani, Marcello
    De Franceschi, Paolo
    Dall'Agata, Michela
    AGRONOMY-BASEL, 2019, 9 (04):
  • [45] An Edge-assisted,Object-oriented Random Forest Approach for Refined Extraction of Tea Plantations Using Multi-temporal Sentinel-2 and High-resolution Gaofen-2 Imagery
    Juanjuan YU
    Xiufeng HE
    Jia XU
    Zhuang GAO
    Peng YANG
    Yuanyuan CHEN
    Jiacheng XIONG
    Journal of Geodesy and Geoinformation Science, 2023, 6 (01) : 31 - 46