Some Operators on Minimal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius Invariant Function Spaces

被引:0
|
作者
Zengjian Lou [1 ]
Xiaojing Zhou [1 ]
机构
[1] Shantou University,Department of Mathematics
关键词
-Möbius invariant function spaces; Besov spaces; Volterra type operators; Multiplication operators; 46E15; 30H25; 30H99;
D O I
10.1007/s11785-024-01587-1
中图分类号
学科分类号
摘要
In this paper, our primary focus is to study the boundedness and compactness of Volterra type operators and multiplication operators on minimal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant function spaces. Additionally, we also present a characterization of the boundedness and compactness of Volterra type and multiplication operators from minimal α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Möbius invariant function spaces to Besov spaces.
引用
收藏
相关论文
共 17 条