Mitigation of charge heterogeneity by uniform in situ coating enables stable cycling of LiCoO2 at 4.6V

被引:7
作者
Li, Yu [1 ,2 ,3 ]
Pan, Hongyi [1 ,2 ]
Gan, Luyu [1 ,2 ,3 ]
Zan, Mingwei [1 ,2 ,3 ]
Huang, Yuli [1 ,2 ,3 ]
Wang, Bitong [1 ,2 ]
Deng, Biao [4 ]
Wang, Tian [5 ]
Yu, Xiqian [1 ,2 ,3 ]
Wang, Bo [5 ]
Li, Hong [1 ,2 ,3 ]
Huang, Xuejie [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Frontier Res Ctr Clean Energy, Huairou Div, Beijing 101400, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[5] Huawei Technol Co Ltd, Cent Res Inst, Watt Lab, Shenzhen 518129, Peoples R China
基金
中国国家自然科学基金;
关键词
LiCoO2; Coating; Charge heterogeneity; Mechanical failure; Lithium-ion batteries; CATHODE MATERIAL; HIGH-ENERGY; MICROSTRUCTURE; CAPACITY; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.ensm.2024.103290
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiCoO2 is a predominant cathode for lithium-ion batteries of portable electronics owing to its merit of high volumetric energy density. Nevertheless, it experiences rapid capacity deterioration under high voltages, concomitant with structural degradation and numerous intragranular cracks. Coating has been recognized as an efficacious strategy to ameliorate the decline in cycling performance of LiCoO2 at high voltages. Hence, a systematic elucidation of the precise mechanisms underlying the mitigation of structural degradation via coating layers assumes paramount importance in the context of advancing the next generation of high-voltage LiCoO2. In this work, the intricate interrelation among lithium-ion diffusion coefficients, charge heterogeneity, and crack distribution is explicated through techniques inclusive of galvanostatic intermittent titration technique (GITT), finite element analysis (FEA), and X-ray computed tomography (XCT). A robustly stable lithium-ion-conducting coating material serves the function of curtailing the occurrence of surface passivation layers, achieved by diminishing side reactions between the LiCoO2 and the electrolyte; while a uniform coating ensures a homogeneous lithium-ion flux, thereby mitigating charge heterogeneity and the resultant mechanical strain as well as intragranular cracks. Both are important elements that collectively allow the coating to effectively protect the surface from structural degradation, thus achieving superior performances upon high-voltage charging.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Improving thermal and electrochemical performances of LiCoO2 cathode at high cut-off charge potentials by MF3 (M=Ce, Al) coating [J].
Aboulaich, Abdelmaula ;
Ouzaouit, Khalid ;
Faqir, Hakim ;
Kaddami, Abderrahman ;
Benzakour, Intissar ;
Akalay, Ismail .
MATERIALS RESEARCH BULLETIN, 2016, 73 :362-368
[2]   Microstructure of LiCoO2 with and without "AIPO4" nanoparticle coating:: Combined STEM and XPS studies [J].
Appapillai, Anjuli T. ;
Mansour, Azzam N. ;
Cho, Jaephil ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5748-5757
[3]   Stalling oxygen evolution in high-voltage cathodes by lanthurization [J].
Cai, Mingzhi ;
Dong, Yanhao ;
Xie, Miao ;
Dong, Wujie ;
Dong, Chenlong ;
Dai, Peng ;
Zhang, Hui ;
Wang, Xin ;
Sun, Xuzhou ;
Zhang, Shaoning ;
Yoon, Moonsu ;
Xu, Haowei ;
Ge, Yunsong ;
Li, Ju ;
Huang, Fuqiang .
NATURE ENERGY, 2023, 8 (02) :159-+
[4]   Structure/Interface Coupling Effect for High-Voltage LiCoO2 Cathodes [J].
Chen, Jun ;
Chen, Hongyi ;
Zhang, Shu ;
Dai, Alvin ;
Li, Tianyi ;
Mei, Yu ;
Ni, Lianshan ;
Gao, Xu ;
Deng, Wentao ;
Yu, Lei ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Dahbi, Mouad ;
Xu, Wenqian ;
Wen, Jianguo ;
Alami, Jones ;
Liu, Tongchao ;
Amine, Khalil ;
Ji, Xiaobo .
ADVANCED MATERIALS, 2022, 34 (42)
[5]   Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V [J].
Chen, ZH ;
Dahn, JR .
ELECTROCHIMICA ACTA, 2004, 49 (07) :1079-1090
[6]   A Hybrid Ionic and Electronic Conductive Coating Layer for Enhanced Electrochemical Performance of 4.6 V LiCoO2 [J].
Cheng, Tao ;
Cheng, Qin ;
He, Yun ;
Ge, Menghan ;
Feng, Zhijie ;
Li, Panpan ;
Huang, Yijia ;
Zheng, Jieyun ;
Lyu, Yingchun ;
Guo, Bingkun .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) :42917-42926
[7]   Effect of P2O5 and AlPO4 coating on LiCoO2 cathode material [J].
Cho, J ;
Lee, JG ;
Kim, B ;
Park, B .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3190-3193
[8]   Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J].
Cho, J ;
Kim, YJ ;
Park, B .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3788-3791
[9]   Understanding the Role of Al Doping of LiCoO2 on the Mechanisms Upon Cycling up to High Voltages (?4.6 V vs Li+/Li) [J].
Er-Rami, Fatima-Ezzahra ;
Duffiet, Marie ;
Hinkle, Sean ;
Auvergniot, Jeremie ;
Blangero, Maxime ;
Cabelguen, Pierre-Etienne ;
Song, Kyeongse ;
Weill, Francois ;
Delmas, Claude ;
Carlier, Dany .
CHEMISTRY OF MATERIALS, 2022, 34 (10) :4384-4393
[10]   Phase Evolution and Degradation Modes of R(3)over-barm LixNi1-y-zCoyAlz,O2 Electrodes Cycled Near Complete Delithiation [J].
Faenza, Nicholas V. ;
Pereira, Nathalie ;
Halat, David M. ;
Vinckeviciute, Julija ;
Bruce, Plejandro ;
Radin, Maxwell D. ;
Mukherjee, Pinaki ;
Badway, Fadwa ;
Halajko, Anna ;
Cosandey, Frederic ;
Grey, Clare P. ;
Van der Ven, Anton ;
Arnatucci, Glenn G. .
CHEMISTRY OF MATERIALS, 2018, 30 (21) :7545-7574