On self-dual Carrollian conformal nonlinear electrodynamics

被引:5
作者
Chen, Bin [1 ,2 ,3 ]
Hou, Jue [4 ,5 ]
Sun, Haowei [2 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China
[2] Peking Univ, Sch Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr High Energy Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China
[5] Southeast Univ, Shing Tung Yau Ctr, Nanjing 211189, Peoples R China
基金
中国博士后科学基金;
关键词
Duality in Gauge Field Theories; Integrable Field Theories; Space-Time Symmetries; Scale and Conformal Symmetries; ROTATIONS;
D O I
10.1007/JHEP08(2024)160
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this work, we study the duality symmetry group of Carrollian (nonlinear) electrodynamics and propose a family of Carrollian ModMax theories, which are invariant under Carrollian SO(2) electromagnetic (EM) duality transformations and conformal transformation. We define the Carrollian SO(2) EM transformations, with the help of Hodge duality in Carrollian geometry, then we rederive the Gaillard-Zumino consistency condition for EM duality of Carrollian nonlinear electrodynamics. Together with the traceless condition for the energy-momentum tensor, we are able to determine the Lagrangian of the Carrollian ModMax theories among pure electrodynamics. We furthermore study their behaviors under the TT<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{T\overline{T}} $$\end{document} deformation flow, and show that these theories deform to each other and may reach two endpoints under the flow, with one of the endpoint being the Carrollian Maxwell theory. As a byproduct, we construct a family of two-dimensional Carrollian ModMax-like multiple scalar theories, which are closed under the TT<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{T\overline{T}} $$\end{document} flow and may flow to a BMS free multi-scalar model.
引用
收藏
页数:32
相关论文
共 50 条
[41]   Taub-NUT instanton as the self-dual analog of Kerr [J].
Desai, Jash ;
Herczeg, Gabriel ;
Mcnutt, David ;
Pezzelle, Max .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (12)
[42]   Self-dual U(1) lattice field theory with a θ-term [J].
Mariia Anosova ;
Christof Gattringer ;
Tin Sulejmanpasic .
Journal of High Energy Physics, 2022
[43]   A hidden 2d CFT for self-dual Yang-Mills on the celestial sphere [J].
Bu, Wei ;
Seet, Sean .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08)
[44]   On integrable backgrounds self-dual under fermionic T-duality [J].
Adam, Ido ;
Dekel, Amit ;
Oz, Yaron .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04)
[45]   Self-dual sectors for scalar field theories in (1 + 1) dimensions [J].
L. A. Ferreira ;
P. Klimas ;
Wojtek J. Zakrzewski .
Journal of High Energy Physics, 2019
[46]   A non-abelian self-dual gauge theory in 5 + 1 dimensions [J].
Pei-Ming Ho ;
Kuo-Wei Huang ;
Yutaka Matsuo .
Journal of High Energy Physics, 2011
[47]   Self-dual sectors for scalar field theories in (1+1) dimensions [J].
Ferreira, L. A. ;
Klimas, P. ;
Zakrzewski, Wojtek J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
[48]   Self-dual vector multiplet in 3D with gauged scale covariance [J].
Nishino, H ;
Rajpoot, S .
JOURNAL OF HIGH ENERGY PHYSICS, 2004, (12)
[49]   The celestial chiral algebra of self-dual gravity on Eguchi-Hanson space [J].
Bittleston, Roland ;
Heuveline, Simon ;
Skinner, David .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
[50]   Infinitely many conservation laws in self-dual Yang-Mills theory [J].
Adam, C. ;
Sanchez-Guillen, J. ;
Wereszcznski, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09)