On self-dual Carrollian conformal nonlinear electrodynamics

被引:5
|
作者
Chen, Bin [1 ,2 ,3 ]
Hou, Jue [4 ,5 ]
Sun, Haowei [2 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China
[2] Peking Univ, Sch Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr High Energy Phys, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China
[5] Southeast Univ, Shing Tung Yau Ctr, Nanjing 211189, Peoples R China
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 08期
基金
中国博士后科学基金;
关键词
Duality in Gauge Field Theories; Integrable Field Theories; Space-Time Symmetries; Scale and Conformal Symmetries; ROTATIONS;
D O I
10.1007/JHEP08(2024)160
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this work, we study the duality symmetry group of Carrollian (nonlinear) electrodynamics and propose a family of Carrollian ModMax theories, which are invariant under Carrollian SO(2) electromagnetic (EM) duality transformations and conformal transformation. We define the Carrollian SO(2) EM transformations, with the help of Hodge duality in Carrollian geometry, then we rederive the Gaillard-Zumino consistency condition for EM duality of Carrollian nonlinear electrodynamics. Together with the traceless condition for the energy-momentum tensor, we are able to determine the Lagrangian of the Carrollian ModMax theories among pure electrodynamics. We furthermore study their behaviors under the TT<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{T\overline{T}} $$\end{document} deformation flow, and show that these theories deform to each other and may reach two endpoints under the flow, with one of the endpoint being the Carrollian Maxwell theory. As a byproduct, we construct a family of two-dimensional Carrollian ModMax-like multiple scalar theories, which are closed under the TT<overline>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{T\overline{T}} $$\end{document} flow and may flow to a BMS free multi-scalar model.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Dualities of self-dual nonlinear electrodynamics
    Russo, Jorge G.
    Townsend, Paul K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (09):
  • [2] Causal self-dual electrodynamics
    Russo, Jorge G.
    Townsend, Paul K.
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [3] Self-Dual Conformal Gravity
    Dunajski, Maciej
    Tod, Paul
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) : 351 - 373
  • [4] Self-Dual Conformal Gravity
    Maciej Dunajski
    Paul Tod
    Communications in Mathematical Physics, 2014, 331 : 351 - 373
  • [5] Conformal self-dual fields
    Metsaev, R. R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (11)
  • [6] Interacting conformal Carrollian theories: Cues from electrodynamics
    Banerjee, Kinjal
    Basu, Rudranil
    Mehra, Aditya
    Mohan, Akhila
    Sharma, Aditya
    PHYSICAL REVIEW D, 2021, 103 (10)
  • [7] Differential invariants of self-dual conformal structures
    Kruglikov, Boris
    Schneider, Eivind
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 113 : 176 - 187
  • [8] Self-Dual Conformal Supergravity and the Hamiltonian Formulation
    Guoying Chee
    Yanhua Jia
    General Relativity and Gravitation, 2001, 33 : 1953 - 1971
  • [9] Self-dual conformal supergravity and the Hamiltonian formulation
    Chee, G
    Jia, YH
    GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (11) : 1953 - 1971
  • [10] Proper conformal symmetries in self-dual Einstein spaces
    Chudecki, Adam
    Dobrski, Michal
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)