On some freeness-type properties for line arrangements

被引:0
作者
Abe, Takuro [1 ]
Ibadula, Denis [2 ]
Macinic, Anca [3 ]
机构
[1] Rikkyo Univ, Dept Math, 3-34-1,Mishi Ikebukuro,Toshima Ku, Tokyo 1718501, Japan
[2] Ovidius Univ, Fac Math & Informat, 124 Mamaia Blvd T, Constanta 900527, Romania
[3] Romanian Acad, Simion Stoilow Inst Math, 21 Calea Grivitei St, Bucharest 010702, Romania
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the relation between nearly free plane arrangements and combinatorics, by way of Ziegler restrictions, and we give a Yoshinaga-type criterion for plus -one generated plane arrangements.
引用
收藏
页码:427 / 447
页数:21
相关论文
共 19 条
[1]   Non-recursive freeness and non-rigidity [J].
Abe, T. ;
Cuntz, M. ;
Kawanoue, H. ;
Nozawa, T. .
DISCRETE MATHEMATICS, 2016, 339 (05) :1430-1449
[2]   Splitting criterion for reflexive sheaves [J].
Abe, Takuro ;
Yoshinaga, Masahiko .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :1887-1891
[3]   Plus-one Generated and Next to Free Arrangements of Hyperplanes [J].
Abe, Takuro .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (12) :9233-9261
[4]   Splitting types of bundles of logarithmic vector fields along plane curves [J].
Abe, Takuro ;
Dimca, Alexandru .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (08)
[5]   ROOTS OF CHARACTERISTIC POLYNOMIALS AND INTERSECTION POINTS OF LINE ARRANGEMENTS [J].
Abe, Takuro .
JOURNAL OF SINGULARITIES, 2014, 8 :100-116
[6]   Chambers of 2-affine arrangements and freeness of 3-arrangements [J].
Abe, Takuro .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (01) :65-78
[7]   Exponents of 2-multiarrangements and multiplicity lattices [J].
Abe, Takuro ;
Numata, Yasuhide .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 35 (01) :1-17
[8]  
Dimca A, 2018, Arxiv, DOI arXiv:1712.04400
[9]  
Dimca A, 2020, OSAKA J MATH, V57, P847
[10]   Plane curves with three syzygies, minimal Tjurina curves, and nearly cuspidal curves [J].
Dimca, Alexandru ;
Sticlaru, Gabriel .
GEOMETRIAE DEDICATA, 2020, 207 (01) :29-49