Classification and Early Detection of Solar Panel Faults with Deep Neural Network Using Aerial and Electroluminescence Images

被引:1
作者
Jaybhaye, Sangita [1 ]
Sirvi, Vishal [1 ]
Srivastava, Shreyansh [1 ]
Loya, Vaishnav [1 ]
Gujarathi, Varun [1 ]
Jaybhaye, M. D. [2 ]
机构
[1] Vishwakarma Inst Technol, Dept Comp Engn, Pune, India
[2] COEP Technol Univ, Dept Mfg Engn & Ind Management, Pune, India
关键词
Early detection; Fault classification; Aerial images; Electroluminescence images; Solar panels;
D O I
10.1007/s11668-024-01959-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an innovative approach to detect solar panel defects early, leveraging distinct datasets comprising aerial and electroluminescence (EL) images. The decision to employ separate datasets with different models signifies a strategic choice to harness the unique strengths of each imaging modality. Aerial images provide comprehensive surface-level insights, while electroluminescence images offer valuable information on internal defects. By using these datasets with specialized models, the study aims to improve defect detection accuracy and reliability. The research explores the effectiveness of modified deep learning models, including DenseNet121 and MobileNetV3, for analyzing aerial images, and introduces a customized architecture and EfficientNetV2B2 models for electroluminescence image analysis. Results indicate promising accuracies for DenseNet121 (93.75%), MobileNetV3 (93.26%), ELFaultNet (customized architecture) (91.62%), and EfficientNetV2B2 (81.36%). This study's significance lies in its potential to transform solar panel maintenance practices, enabling early defect identification and subsequent optimization of energy production.
引用
收藏
页码:1746 / 1758
页数:13
相关论文
共 17 条
[1]  
Afroz, 2023, Solar Panel Images Dataset
[2]   CNN based automatic detection of photovoltaic cell defects in electroluminescence images [J].
Akram, M. Waqar ;
Li, Guiqiang ;
Jin, Yi ;
Chen, Xiao ;
Zhu, Changan ;
Zhao, Xudong ;
Khaliq, Abdul ;
Faheem, M. ;
Ahmad, Ashfaq .
ENERGY, 2019, 189
[3]  
Althea M., 2023, 8 N AM C IND ENG OP, DOI [10.46254/NA8.20230375, DOI 10.46254/NA8.20230375]
[4]   Automatic classification of defective photovoltaic module cells in electroluminescence images [J].
Deitsch, Sergiu ;
Christlein, Vincent ;
Berger, Stephan ;
Buerhop-Lutz, Claudia ;
Maier, Andreas ;
Gallwitz, Florian ;
Riess, Christian .
SOLAR ENERGY, 2019, 185 :455-468
[5]   PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system [J].
Fadhel, S. ;
Delpha, C. ;
Diallo, D. ;
Bahri, I. ;
Migan, A. ;
Trabelsi, M. ;
Mimouni, M. F. .
SOLAR ENERGY, 2019, 179 :1-10
[6]  
Halah SA., 2023, Int. J. Smart Grid, V7, P189, DOI [10.20508/ijsmartgrid.v7i4.311.g300, DOI 10.20508/IJSMARTGRID.V7I4.311.G300]
[7]   A review of automated solar photovoltaic defect detection systems: Approaches, challenges, and future orientations [J].
Hijjawi, Ula ;
Lakshminarayana, Subhash ;
Xu, Tianhua ;
Fierro, Gian Piero Malfense ;
Rahman, Mostafizur .
SOLAR ENERGY, 2023, 266
[8]   Solar Panel Damage Detection and Localization of Thermal Images [J].
Jaybhaye, Sangita ;
Thakur, Om ;
Yardi, Rajas ;
Raut, Ved ;
Raut, Aditya .
JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2023, 23 (05) :1980-1990
[9]   Enhancing Photovoltaic Module Fault Diagnosis with Unmanned Aerial Vehicles and Deep Learning-Based Image Analysis [J].
Jerome Vasanth, J. ;
Naveen Venkatesh, S. ;
Sugumaran, V. ;
Mahamuni, Vetri Selvi .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2023, 2023
[10]  
Kabour S., 2023, INDONES J ELECT ENG, V32, P353, DOI [10.11591/ijeecs.v32.i1.pp353-362, DOI 10.11591/IJEECS.V32.I1.PP353-362]