Pathways for marine carbon dioxide removal using electrochemical acid-base generation

被引:3
作者
Eisaman, Matthew D. [1 ,2 ]
机构
[1] Yale Univ, Dept Earth & Planetary Sci, New Haven, CT 06520 USA
[2] Yale Univ, Yale Ctr Nat Carbon Capture, New Haven, CT 06520 USA
来源
FRONTIERS IN CLIMATE | 2024年 / 6卷
关键词
carbon dioxide removal; negative emissions technologies; marine carbon dioxide removal; ocean carbon dioxide removal; ocean alkalinity enhancement; indirect ocean capture; direct ocean capture; ocean alkalinity cycling; CO2; ALKALINITY; MINERALIZATION; SEAWATER;
D O I
10.3389/fclim.2024.1349604
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Research over the past decade has resulted in various methods for removing CO2 from the atmosphere using seawater and electrochemically generated acids and bases. This Perspective aims to present a unified framework for comparing these approaches. Specifically, these methods can all be seen as falling into one of two categories: those that result in a net increase in ocean alkalinity and use the "ocean as a sponge" for atmospheric CO2 (ocean alkalinity enhancement, or OAE) and those that cycle ocean alkalinity and use the "ocean as a pump" for atmospheric CO2 (ocean alkalinity cycling, or OAC). In this Perspective, approaches for marine carbon dioxide removal (mCDR) using electrochemistry are compared using this framework, and the similarities and differences of these two categories are explored.
引用
收藏
页数:6
相关论文
共 37 条
  • [21] Kim S, 2023, ENERG ENVIRON SCI, V16, P2030, DOI [10.1039/d2ee03804h, 10.1039/D2EE03804H]
  • [22] Electrolytic Seawater Mineralization and the Mass Balances That Demonstrate Carbon Dioxide Removal
    La Plante, Erika Callagon
    Chen, Xin
    Bustillos, Steven
    Bouissonnie, Arnaud
    Traynor, Thomas
    Jassby, David
    Corsini, Lorenzo
    Simonetti, Dante A.
    Sant, Gaurav N.
    [J]. ACS ES&T ENGINEERING, 2023, 3 (07): : 955 - 968
  • [23] The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans
    Lee, Kitack
    Kim, Tae-Wook
    Byrne, Robert H.
    Millero, Frank J.
    Feely, Richard A.
    Liu, Yong-Ming
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (06) : 1801 - 1811
  • [24] Lucas E., 2023, CHEMRXIV, DOI [10.26434/chemrxiv-2023-n4c6x, DOI 10.26434/CHEMRXIV-2023-N4C6X]
  • [25] Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium
    Lueker, TJ
    Dickson, AG
    Keeling, CD
    [J]. MARINE CHEMISTRY, 2000, 70 (1-3) : 105 - 119
  • [26] Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions
    Matter, Juerg M.
    Stute, Martin
    Snaebjornsdottir, Sandra O.
    Oelkers, Eric H.
    Gislason, Sigurdur R.
    Aradottir, Edda S.
    Sigfusson, Bergur
    Gunnarsson, Ingvi
    Sigurdardottir, Holmfridur
    Gunnlaugsson, Einar
    Axelsson, Gudni
    Alfredsson, Helgi A.
    Wolff-Boenisch, Domenik
    Mesfin, Kiflom
    Taya, Diana Fernandez De la Reguera
    Hall, Jennifer
    Dideriksen, Knud
    Broecker, Wallace S.
    [J]. SCIENCE, 2016, 352 (6291) : 1312 - 1314
  • [27] NASEM, 2022, A research strategy for ocean-based carbon dioxide removal and sequestration
  • [28] Natl Acad Sci Engn Med, 2019, NEGATIVE EMISSIONS TECHNOLOGIES AND RELIABLE SEQUESTRATION: A RESEARCH AGENDA, P1, DOI 10.17226/25259
  • [29] NOAA, 2023, Strategy for NOAA carbon dioxide removal (CDR) research: a White paper documenting a potential NOAA CDR science strategy as an element of NOAA's climate intervention portfolio
  • [30] Oschlies A., 2023, Guide to Best Practices in Ocean Alkalinity Enhancement Research