Cell Electrokinetic Fingerprint: A Novel Approach Based on Optically Induced Dielectrophoresis (ODEP) for In-Flow Identification of Single Cells

被引:3
作者
Filippi, Joanna [1 ,2 ]
Casti, Paola [1 ,2 ]
Antonelli, Gianni [1 ,2 ]
Murdocca, Michela [3 ]
Mencattini, Arianna [1 ,2 ]
Corsi, Francesca [4 ,5 ]
D'Orazio, Michele [1 ,2 ]
Pecora, Alessandro [6 ]
De Luca, Massimiliano [6 ]
Curci, Giorgia [1 ,2 ]
Ghibelli, Lina [4 ]
Sangiuolo, Federica [3 ]
Neale, Steven L. [7 ]
Martinelli, Eugenio [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dept Elect Engn, Via Politecn 1, I-00133 Rome, Italy
[2] Interdisciplinary Ctr Adv Studies Lab Onchip & Org, Via Politecn 1, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Dept Biomed & Prevent, Via Montpellier 1, I-00133 Rome, Italy
[4] Univ Roma Tor Vergata, Dept Biol, Via Ric Scientif 1, I-00133 Rome, Italy
[5] Univ Roma Tor Vergata, Dept Chem Sci & Technol, Via Ric Scientif 1, I-00133 Rome, Italy
[6] Italian Nation Res Council CNR, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[7] Univ Glasgow, James Watt Sch Engn, Glasgow City G12 8QQ, Scotland
关键词
electrokinetics; machine learning; optically-induced dielectrophoresis; single-cell analysis; wavelet scattering transform; TIME-LAPSE-MICROSCOPY; MICROFLUIDIC SYSTEM; CANCER-CELLS; MODEL; HETEROGENEITY; APOPTOSIS; MOLECULE;
D O I
10.1002/smtd.202300923
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel optically induced dielectrophoresis (ODEP) system that can operate under flow conditions is designed for automatic trapping of cells and subsequent induction of 2D multi-frequency cell trajectories. Like in a "ping-pong" match, two virtual electrode barriers operate in an alternate mode with varying frequencies of the input voltage. The so-derived cell motions are characterized via time-lapse microscopy, cell tracking, and state-of-the-art machine learning algorithms, like the wavelet scattering transform (WST). As a cell-electrokinetic fingerprint, the dynamic of variation of the cell displacements happening, over time, is quantified in response to different frequency values of the induced electric field. When tested on two biological scenarios in the cancer domain, the proposed approach discriminates cellular dielectric phenotypes obtained, respectively, at different early phases of drug-induced apoptosis in prostate cancer (PC3) cells and for differential expression of the lectine-like oxidized low-density lipoprotein receptor-1 (LOX-1) transcript levels in human colorectal adenocarcinoma (DLD-1) cells. The results demonstrate increased discrimination of the proposed system and pose an additional basis for making ODEP-based assays addressing cancer heterogeneity for precision medicine and pharmacological research. Optically induced dielectrophoresis (ODEP) generates electrokinetic motions reflecting variations of cell dielectric phenotypes. The under flow configuration provides label-free trapping of the cells, the latter measured in a ping-pong manner between two virtual electrodes operating at diverse frequencies. The obtained trajectories are used to discriminate the cell dielectric phenotypes by means of the wavelet scattering transform (WST) and machine learning algorithms. image
引用
收藏
页数:18
相关论文
共 75 条
[21]   Apoptosis as Driver of Therapy-Induced Cancer Repopulation and Acquired Cell-Resistance (CRAC): A Simple In Vitro Model of Phoenix Rising in Prostate Cancer [J].
Corsi, Francesca ;
Capradossi, Francesco ;
Pelliccia, Andrea ;
Briganti, Stefania ;
Bruni, Emanuele ;
Traversa, Enrico ;
Torino, Francesco ;
Reichle, Albrecht ;
Ghibelli, Lina .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
[22]   Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response [J].
D'Orazio, M. ;
Murdocca, M. ;
Mencattini, A. ;
Casti, P. ;
Filippi, J. ;
Antonelli, G. ;
Di Giuseppe, D. ;
Comes, M. C. ;
Di Natale, C. ;
Sangiuolo, F. ;
Martinelli, E. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[23]   Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy [J].
D'Orazio, Michele ;
Corsi, Francesca ;
Mencattini, Arianna ;
Di Giuseppe, Davide ;
Colomba Comes, Maria ;
Casti, Paola ;
Filippi, Joanna ;
Di Natale, Corrado ;
Ghibelli, Lina ;
Martinelli, Eugenio .
FRONTIERS IN ONCOLOGY, 2020, 10
[24]   Optical micromanipulation [J].
Dholakia, Kishan ;
Reece, Peter ;
Gu, Min .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (01) :42-55
[25]   Learning Cancer-Related Drug Efficacy Exploiting Consensus in Coordinated Motility Within Cell Clusters [J].
Di Giuseppe, Davide ;
Corsi, Francesca ;
Mencattini, Arianna ;
Comes, Maria Colomba ;
Casti, Paola ;
Di Natale, Corrado ;
Ghibelli, Lina ;
Martinelli, Eugenio .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (10) :2882-2888
[26]   Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip [J].
Dou, Maowei ;
Sanjay, Sharma T. ;
Dominguez, Delfina C. ;
Liu, Peng ;
Xu, Feng ;
Li, XiuJun .
BIOSENSORS & BIOELECTRONICS, 2017, 87 :865-873
[27]   Navigating the Challenge of Tumor Heterogeneity in Cancer Therapy [J].
Fedele, Clare ;
Tothill, Richard W. ;
McArthur, Grant A. .
CANCER DISCOVERY, 2014, 4 (02) :146-148
[28]   Exploiting spectral information in Opto-Electronic Tweezers for cell classification and drug response evaluation [J].
Filippi, J. ;
Di Giuseppe, D. ;
Casti, P. ;
Mencattini, A. ;
Antonelli, G. ;
D'Orazio, M. ;
Corsi, F. ;
Canosci, D. Della-Morte ;
Ghibelli, L. ;
Witte, C. ;
Di Natale, C. ;
Neale, S. L. ;
Martinelli, E. .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 368
[29]   Wavelet Scattering Transform and CNN for Closed Set Speaker Identification [J].
Ghezaiel, Wajdi ;
Brun, Luc ;
Lezoray, Olivier .
2020 IEEE 22ND INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2020,
[30]   Single-cell analysis tools for drug discovery and development [J].
Heath, James R. ;
Ribas, Antoni ;
Mischel, Paul S. .
NATURE REVIEWS DRUG DISCOVERY, 2016, 15 (03) :204-216