Advancements in electrochemical CO2 reduction reaction: A review on CO2 mass transport enhancement strategies

被引:23
作者
Zhou, Yuan [1 ]
Wang, Ke [1 ]
Zheng, Shaojie [1 ]
Cheng, Xiao [1 ]
He, Yanxiao [1 ]
Qin, Wei [1 ]
Zhang, Xinghong [1 ]
Chang, Haixing [2 ]
Zhong, Nianbing [3 ]
He, Xuefeng [1 ]
机构
[1] Chongqing Univ Technol, Liangjiang Int Coll, Chongqing 401135, Peoples R China
[2] Chongqing Univ Technol, Coll Chem & Chem Engn, Chongqing 401135, Peoples R China
[3] Chongqing Univ Technol, Inst Higher Educ, Intelligent Fiber Sensing Technol Chongqing Munici, Chongqing Key Lab Fiber Opt Sensor & Photodetector, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
ElectrochemicalCO2 reduction reaction; Mass transport; Electrode; Electrolyzer; eCO2RR Performance; CARBON-DIOXIDE; ELECTROREDUCTION; SELECTIVITY; CATALYSTS;
D O I
10.1016/j.cej.2024.150169
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The imperative to address climate change and CO2 emissions has elicited substantial interest in the field of electrochemical CO2 reduction reaction (eCO2RR) as an avenue to both environmental sustainability and the production of value-added fuels. However, the selectivity and efficiency of eCO2RR remain below the industrial requirement for its implementation at high current density. One pivotal strategy to ameliorate this deficiency involves augmenting the mass transport of CO2 to electrode, thereby alleviating the competing hydrogen evolution reaction and consequently enhancing eCO2RR performance. Herein, we primarily discuss the CO2 mass transport enhancement strategies through electrode and electrolyzer designs, as well as electrolysis conditions. The electrode designs are first presented, including wettability regulation, porous substrates construction, catalyst layer and gas diffusion layer designs. Then, we highlight state-of-the-art electrolyzer designs, including the bipolar membrane structure, interdigitated flow field and in -situ exsolution of CO2 structure. The electrolyzer based gas-liquid Taylor flow is also introduced. Following this, we delve into the impact of various electrolysis conditions, encompassing the electrolyte, electrolysis potentials, CO2 pressure, CO2 flow rate and reaction temperature. Finally, we conclude this review by delineating persisting challenges and potential solutions aimed at advancing CO2 mass transport for the industrial implementation of eCO2RR technology.
引用
收藏
页数:15
相关论文
共 81 条
[1]   Spectroscopic Evidence of Size-Dependent Buffering of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction [J].
Ayemoba, Onagie ;
Cuesta, Angel .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) :27377-27382
[2]   Electrochemical Reduction of CO2 in Tubular Flow Cells under Gas-Liquid Taylor Flow [J].
Bagemihl, Isabell ;
Bhatraju, Chaitanya ;
van Ommen, J. Ruud ;
van Steijn, Volkert .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (38) :12580-12587
[3]   Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols [J].
Bi, Jiahui ;
Li, Pengsong ;
Liu, Jiyuan ;
Jia, Shuaiqiang ;
Wang, Yong ;
Zhu, Qinggong ;
Liu, Zhimin ;
Han, Buxing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions [J].
Burdyny, Thomas ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (05) :1442-1453
[5]  
Chen H., 2023, Natl. Sci. Open, V2
[6]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[7]   Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities [J].
De Gregorio, Gian Luca ;
Burdyny, Tom ;
Loiudice, Anna ;
Iyengar, Pranit ;
Smith, Wilson A. ;
Buonsanti, Raffaella .
ACS CATALYSIS, 2020, 10 (09) :4854-4862
[8]   Influence of flow and pressure distribution inside a gas diffusion electrode on the performance of a flow-by CO2 electrolyzer [J].
De Mot, Bert ;
Hereijgers, Jonas ;
Duarte, Miguel ;
Breugelmans, Tom .
CHEMICAL ENGINEERING JOURNAL, 2019, 378
[9]   Elucidating the Roles of Nafion/Solvent Formulations in Copper- Catalyzed CO2 Electrolysis [J].
Ding, Pan ;
An, Hongyu ;
Zellner, Philipp ;
Guan, Tianfu ;
Gao, Jianyong ;
Mueller-Buschbaum, Peter ;
Weckhuysen, Bert M. ;
van der Stam, Ward ;
Sharp, Ian D. .
ACS CATALYSIS, 2023, 13 (08) :5336-5347
[10]   Confinement of ionomer for electrocatalytic CO2 reduction reaction via efficient mass transfer pathways [J].
Du, Xiaowei ;
Zhang, Peng ;
Zhang, Gong ;
Gao, Hui ;
Zhang, Lili ;
Zhang, Mengmeng ;
Wang, Tuo ;
Gong, Jinlong .
NATIONAL SCIENCE REVIEW, 2024, 11 (02)