Service Function Chaining in LEO Satellite Networks via Multi-Agent Reinforcement Learning

被引:2
作者
Doan, Khai [1 ]
Avgeris, Marios [1 ]
Leivadeas, Aris [2 ,3 ]
Lambadaris, Ioannis [1 ]
Shin, Wonjae [3 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Ecole Technol Super, Dept Software & IT Engn, Montreal, PQ, Canada
[3] Korea Univ, Sch Elect Engn, Seoul, South Korea
来源
IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM | 2023年
关键词
Network Function Virtualization; Service Function Chaining; Satellite Networks; Multi-Agent Reinforcement Learning;
D O I
10.1109/GLOBECOM54140.2023.10437296
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-earth-orbit satellite networks (LSNs) offer an enhanced global connectivity and a wide range of applications such as disaster response and military operations, among others. Each specific application can be represented by a service function chain (SFC) in which each function is considered as a task in the application. Our objective is to optimize the long-term system performance by minimizing the average end-toend delay of SFC deployments in LSNs. To achieve this, we formulate a dynamic programming (DP) problem to derive an optimal placement policy. To overcome the computational intractability, the need for statistical knowledge of SFC requests, and centralized decision-making challenges, we present amulti-agent Q-learning approach where satellites act as independent agents. To facilitate performance convergence in non-stationary agents' environments, we let agents to collaborate by sharing designated learning parameters. In addition, agents update their Q-tables via two distinct rules depending on selected actions. Extensive experimentation shows that our approach achieves convergence and performance relatively close to the optimum obtained by solving the formulated DP equation.
引用
收藏
页码:7145 / 7150
页数:6
相关论文
共 50 条
  • [31] Service Function Chain Migration in LEO Satellite Networks
    Geng, Yuhui
    Wang, Niwei
    Chen, Xi
    Xu, Xiaofan
    Zhou, Changsheng
    Yang, Junyi
    Xiao, Zhenyu
    Cao, Xianbin
    CHINA COMMUNICATIONS, 2024, 21 (03) : 247 - 259
  • [32] Concept Learning for Interpretable Multi-Agent Reinforcement Learning
    Zabounidis, Renos
    Campbell, Joseph
    Stepputtis, Simon
    Hughes, Dana
    Sycara, Katia
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1828 - 1837
  • [33] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [34] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [35] Learning Heterogeneous Strategies via Graph-based Multi-agent Reinforcement Learning
    Li, Yang
    Luo, Xiangfeng
    Xie, Shaorong
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 709 - 713
  • [36] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [37] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [38] Multi-Agent Reinforcement Learning with Reward Delays
    Zhang, Yuyang
    Zhang, Runyu
    Gu, Yuantao
    Li, Na
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [39] Learning adversarial policy in multiple scenes environment via multi-agent reinforcement learning
    Li, Yang
    Wang, Xinzhi
    Wang, Wei
    Zhang, Zhenyu
    Wang, Jianshu
    Luo, Xiangfeng
    Xie, Shaorong
    CONNECTION SCIENCE, 2021, 33 (03) : 407 - 426
  • [40] BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
    Bettini, Matteo
    Prorok, Amanda
    Moens, Vincent
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25