共 28 条
- [1] Azamathulla H.M., Gene-expression programming to predict friction factor for Southern Italian Rivers, Neural Comput. Appl., 23, 5, pp. 1421-1426, (2013)
- [2] Azimi H., Bonakdari H., Ebtehaj I., Gene expression programming-based approach for predicting the roller length of a hydraulic jump on a rough bed, ISH J. Hydraul. Eng., pp. 1-11, (2019)
- [3] Bengio Y., Learning deep architectures for AI, Found. Trends® Mach. Learn., 2, 1, pp. 1-127, (2009)
- [4] Candel A., Parmar V., LeDell E., Arora A., Deep learning with H2O, (2018)
- [5] Chai T., Draxler R.R., Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, pp. 1247-1250, (2014)
- [6] Chanson H., Carvalho R.F., Hydraulic jumps and stilling basins, Energy dissipation in hydraulic structures, pp. 65-104, (2015)
- [7] Endres L.A.M., Contribution to development a system for acquisition and processing of instantaneous pressure data in laboratory, Master thesis, (1990)
- [8] Farhoudi F., Sadat-Helbar S.M., Aziz N., Pressure fluctuation around chute blocks of SAF Stilling basins, J. Agr. Sci. Tech., 12, pp. 203-212, (2010)
- [9] Fiorotto V., Rinaldo A., Fluctuating uplift and lining design in spillway stilling basins, J. Hydraul. Eng., 118, 4, pp. 578-597, (1992)
- [10] Ghorbani M.A., Deo R.C., Yaseen Z.M.K., Mahasa H.K., Mohammad B., Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran, Theor. Appl. Climatol., 133, pp. 1119-1131, (2017)