First-principles study of the interaction of nitrogen with transition metal solutes in tungsten

被引:0
作者
He, Kang-Ni [1 ]
Jing, Shui-Qing [1 ]
Zhang, Yuan-Ye [1 ]
Chen, L. [1 ]
Xie, Z. M. [2 ]
Kong, Xiang-Shan [1 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, POB 1129, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
Tungsten; Nitrogen; Transition metal solutes; Interaction; First-principles calculations; TOTAL-ENERGY CALCULATIONS; PLASMA-FACING MATERIALS; MECHANICAL-PROPERTIES; 1ST PRINCIPLES; DIFFUSION; CARBON; IRRADIATION; RETENTION; COATINGS; HYDROGEN;
D O I
10.1016/j.jnucmat.2024.155118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The choice of tungsten (W) as the plasma-facing material requires seeding impurities into the edge plasma for radiative cooling, and gaseous nitrogen (N) is one of the most likely impurities to be used for this purpose. In this work, first-principles calculations related to the interactions between N and transition metal (TM) solutes were performed. The interactions between the TM solutes and N are predominantly attractive and very localized. Specifically, the 3d solutes exhibit a stronger attraction to N than the 4d and 5d solutes. Consequently, most TM solutes can alter the N distribution, promoting the N aggregation within their neighboring shells, and impeding the N diffusion. Moreover, this effect is more conspicuous in the 3d solutes related to the 4d and 5d solutes. In the Sol-Vac-N complexes, the vacancy assumes a predominant role. Most TM solutes diminish the capability of vacancies to capture N. The exception arises in Ti, V, Zr, Nb, Hf, and Ta, where these solutes enhance the vacancies' ability to capture N. Further investigation revealed that, for Ti, V, Zr, Hf, Ta, and Os, the capacity of Sol-N pairs to adsorb the additional N and solute atoms is significant. As a result, it can be speculated that the Sol-N pairs for these solutes might continue to adsorb additional N and solute atoms, eventually evolving into nitrides. However, for the primary transmutation product Re, the capacity of Sol-N pairs to adsorb additional Re atoms is negligible. Therefore, it is inferred that the formation of Re nitride is rather unlikely during W's service life as plasma-facing materials.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Solute-point defect interactions in bcc systems: Focus on first principles modelling in W and RPV steels [J].
Becquart, C. S. ;
Domain, C. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (03) :115-125
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Nitrogen diffusion parameters in ion-implanted tungsten single crystals [J].
Bodnar, OB ;
Aristova, IM ;
Mazilkin, AA ;
Pronina, LN ;
Chaika, AN ;
Popov, PY .
PHYSICS OF THE SOLID STATE, 2006, 48 (01) :10-14
[4]   Interaction between seeding gas ions and nitrogen saturated tungsten surfaces [J].
Dobes, K. ;
Smejkal, V. ;
Schaefer, T. ;
Aumayr, F. .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2014, 365 :64-67
[5]   PERMEATION DIFFUSION AND SOLUTION OF NITROGEN IN TUNGSTEN AND MOLYBDENUM [J].
FRAUENFE.R .
JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (09) :3966-&
[6]   Defect structural evolution in high purity tungsten irradiated with electrons using high voltage electron microscope [J].
Fukuzumi, S ;
Yoshiie, T ;
Satoh, Y ;
Xu, Q ;
Mori, H ;
Kawai, M .
JOURNAL OF NUCLEAR MATERIALS, 2005, 343 (1-3) :308-312
[7]   Interaction of deuterium plasma with sputter-deposited tungsten nitride films [J].
Gao, L. ;
Jacob, W. ;
Meisl, G. ;
Schwarz-Selinger, T. ;
Hoeschen, T. ;
von Toussaint, U. ;
Duerbeck, T. .
NUCLEAR FUSION, 2016, 56 (01)
[8]   Neutron-induced transmutation effects in W and W-alloys in a fusion environment [J].
Gilbert, M. R. ;
Sublet, J. -Ch .
NUCLEAR FUSION, 2011, 51 (04)
[9]   TRANSMUTATION OF MO, RE, W, HF, AND V IN VARIOUS IRRADIATION TEST FACILITIES AND STARFIRE [J].
GREENWOOD, LR ;
GARNER, FA .
JOURNAL OF NUCLEAR MATERIALS, 1994, 212 (pt A) :635-639
[10]   Structure and mechanical properties of formed tungsten based materials [J].
Greger, M ;
Cízek, L ;
Widomska, M .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 157 :683-687