Insights into quantum tunneling via a phase-space approach

被引:0
作者
Chen, Chen [1 ,2 ]
Zhou, Shuyu [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Quantum Opt, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
关键词
GROUND-STATE; TIME; DYNAMICS; ENERGY; SUPERLUMINALITY; PROPAGATION; MEDIA;
D O I
10.1103/PhysRevA.109.032227
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum tunneling, as a quintessential quantum phenomenon, has been investigated in detail both theoretically and experimentally. Still, the physical picture of the tunneling process is not intuitive, leading to some confusion and paradoxes. In this paper, we have tried to gain insight into quantum tunneling by a phase-space approach. For this purpose, we scrutinize the evolution of the Wigner distribution during tunneling and derive the energy and momentum spectra by integrating over a segment of phase space. In this way, some of the difficulties and paradoxes in tunneling probability, energy conservation, and tunneling time are given a clearer interpretation. Negative probabilities in the Wigner distribution play a key role in the tunneling process, and the origin of negative probabilities clearly indicates that the volatility of matter underlies the various exotic phenomena involved.
引用
收藏
页数:10
相关论文
共 59 条
[1]   Spin-selective tunneling from nanowires of the candidate topological Kondo insulator SmB6 [J].
Aishwarya, Anuva ;
Cai, Zhuozhen ;
Raghavan, Arjun ;
Romanelli, Marisa ;
Wang, Xiaoyu ;
Li, Xu ;
Gu, G. D. ;
Hirsbrunner, Mark ;
Hughes, Taylor ;
Liu, Fei ;
Jiao, Lin ;
Madhavan, Vidya .
SCIENCE, 2022, 377 (6611) :1218-1222
[2]   Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity [J].
Antoine, Xavier ;
Duboscq, Romain .
NONLINEAR OPTICAL AND ATOMIC SYSTEMS: AT THE INTERFACE OF PHYSICS AND MATHEMATICS, 2015, 2146 :49-145
[3]   GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations [J].
Antoine, Xavier ;
Duboscq, Romain .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 193 :95-117
[4]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[5]   Sensing the quantum limit in scanning tunnelling spectroscopy [J].
Ast, Christian R. ;
Jaeck, Berthold ;
Senkpiel, Jacob ;
Eltschka, Matthias ;
Etzkorn, Markus ;
Ankerhold, Joachim ;
Kern, Klaus .
NATURE COMMUNICATIONS, 2016, 7
[6]   Quantum tunneling in nuclear fusion [J].
Balantekin, AB ;
Takigawa, N .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :77-100
[7]   Ground-state solution of Bose-Einstein condensate by directly minimizing the energy functional [J].
Bao, WZ ;
Tang, WJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :230-254
[8]   Scanning tunneling microscopy (Reprinted from IBM Journal of Research and development, vol 30, 1986) [J].
Binnig, G ;
Rohrer, H .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2000, 44 (1-2) :279-293
[9]   TRAVERSAL TIME FOR TUNNELING [J].
BUTTIKER, M ;
LANDAUER, R .
PHYSICAL REVIEW LETTERS, 1982, 49 (23) :1739-1742
[10]   Experimental Evidence for Quantum Tunneling Time [J].
Camus, Nicolas ;
Yakaboylu, Enderalp ;
Fechner, Lutz ;
Klaiber, Michael ;
Laux, Martin ;
Mi, Yonghao ;
Hatsagortsyan, Karen Z. ;
Pfeifer, Thomas ;
Keitel, Christoph H. ;
Moshammer, Robert .
PHYSICAL REVIEW LETTERS, 2017, 119 (02)