HMTN: Hierarchical Multi-scale Transformer Network for 3D Shape Recognition

被引:3
作者
Zhao, Yue [1 ,2 ]
Nie, Weizhi [1 ]
Gao, Zan [3 ]
Liu, An-an [1 ,2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Shandong Artificial Intelligence Inst, Jinan, Peoples R China
来源
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022 | 2022年
基金
中国国家自然科学基金;
关键词
3D Shape Recognition; Transformer; Hierarchical Network;
D O I
10.1145/3503161.3548140
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As an important field of multimedia, 3D shape recognition has attracted much research attention in recent years. Various approaches have been proposed, within which the multiview-based methods show their promising performances. In general, an effective 3D shape recognition algorithm should take both the multiview local and global visual information into consideration, and explore the inherent properties of generated 3D descriptors to guarantee the performance of feature alignment in the common space. To tackle these issues, we propose a novel Hierarchical Multi-scale Transformer Network (HMTN) for the 3D shape recognition task. In HMTN, we propose a multi-level regional transformer (MLRT) module for shape descriptor generation. MLRT includes two branches that aim to extract the intra-view local characteristics by modeling region-wise dependencies and give the supervision of multiview global information under different granularities. Specifically, MLRT can comprehensively consider the relations of different regions and focus on the discriminative parts, which improves the effectiveness of the learned descriptors. Finally, we adopt the cross-granularity contrastive learning (CCL) mechanism for shape descriptor alignment in the common space. It can explore and utilize the cross-granularity semantic correlation to guide the descriptor extraction process while performing the instance alignment based on the category information. We evaluate the proposed network on several public benchmarks, and HMTN achieves competitive performance compared with the state-of-the-art (SOTA) methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] An Improved Transformer Network With Multi-Scale Convolution for Weed Identification in Sugarcane Field
    Sun, Cuimin
    Zhang, Menghua
    Zhou, Muchen
    Zhou, Xingzhi
    IEEE ACCESS, 2024, 12 : 31168 - 31181
  • [22] Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles
    Divya Singh
    Rajeev Srivastava
    Intelligent Service Robotics, 2022, 15 : 307 - 320
  • [23] MULTI-SCALE CONVOLUTION-TRANSFORMER FUSION NETWORK FOR ENDOSCOPIC IMAGE SEGMENTATION
    Zou, Baosheng
    Zhou, Zongguang
    Han, Ying
    Li, Kang
    Wang, Guotai
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [24] Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles
    Singh, Divya
    Srivastava, Rajeev
    INTELLIGENT SERVICE ROBOTICS, 2022, 15 (03) : 307 - 320
  • [25] MULTI-SCALE TRANSFORMER NETWORK FOR SALIENCY PREDICTION ON 360-DEGREE IMAGES
    Lin, Xu
    Qing, Chunmei
    Tan, Junpeng
    Xu, Xiangmin
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1700 - 1704
  • [26] Efficient Hierarchical Multi-view Fusion Transformer for 3D Human Pose Estimation
    Zhou, Kangkang
    Zhang, Lijun
    Lu, Feng
    Zhou, Xiang-Dong
    Shi, Yu
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7512 - 7520
  • [27] Mixed-Type Wafer Defect Recognition With Multi-Scale Information Fusion Transformer
    Wei, Yuxiang
    Wang, Huan
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2022, 35 (02) : 341 - 352
  • [28] Multi-TranResUnet: An Improved Transformer Network for Solving Multi-Scale Issues in Image Segmentation
    Kang, Yajing
    Cheng, Shuai
    Guo, Liang
    Zheng, Chao
    Zhao, Jizhuang
    IEEE ACCESS, 2024, 12 : 129000 - 129011
  • [29] Multi-Scale Adaptive Skeleton Transformer for action
    Wang, Xiaotian
    Chen, Kai
    Zhao, Zhifu
    Shi, Guangming
    Xie, Xuemei
    Jiang, Xiang
    Yang, Yifan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 250
  • [30] SKETCH-BASED 3D SHAPE RETRIEVAL WITH MULTI-VIEW FUSION TRANSFORMER
    Zhu, Cunjuan
    Cui, Dongdong
    Jia, Qi
    Wang, Weimin
    Liu, Yu
    Lew, Michael S.
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3005 - 3009