Multi-objective optimization of custom implant abutment design for enhanced bone remodeling in single-crown implants using 3D finite element analysis

被引:0
|
作者
Poovarodom, Pongsakorn [1 ,2 ]
Rungsiyakull, Chaiy [3 ]
Suriyawanakul, Jarupol [4 ]
Li, Qing [5 ]
Sasaki, Keiichi [6 ,7 ]
Yoda, Nobuhiro [7 ]
Rungsiyakull, Pimduen [1 ]
机构
[1] Chiang Mai Univ, Fac Dent, Dept Prosthodont, Chiang Mai 50200, Thailand
[2] Med Univ South Carolina, James B Edwards Coll Dent Med, Dept Reconstruct & Rehabil Sci, Res, Charleston, SC 29425 USA
[3] Chiang Mai Univ, Fac Engn, Dept Mech Engn, Chiang Mai 50200, Thailand
[4] Khon Kaen Univ, Fac Engn, Dept Mech Engn, Khon Kaen 40000, Thailand
[5] Univ Sydney, Fac Engn & IT, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2037, Australia
[6] Miyagi Univ, Taiwa, Miyagi 9813298, Japan
[7] Tohoku Univ, Grad Sch Dent, Div Adv Prosthet Dent, Sendai, Miyagi 9808575, Japan
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Optimization; Bone remodeling; Dental implant; Customized abutment; Finite element analysis; PLACEMENT DEPTH; CRESTAL BONE; DENTAL IMPLANTS; STRESS-ANALYSIS; SURFACE; SOFT; BEHAVIOR; RESTORATIONS; FAILURE; HEIGHT;
D O I
10.1038/s41598-024-66807-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The optimal configuration of a customized implant abutment is crucial for bone remodeling and is influenced by various design parameters. This study introduces an optimization process for designing two-piece zirconia dental implant abutments. The aim is to enhance bone remodeling, increase bone density in the peri-implant region, and reduce the risk of late implant failure. A 12-month bone remodeling algorithm subroutine in finite element analysis to optimize three parameters: implant placement depth, abutment taper degree, and gingival height of the titanium base abutment. The response surface analysis shows that implant placement depth and gingival height significantly impact bone density and uniformity. The taper degree has a smaller effect on bone remodeling. The optimization identified optimal values of 1.5 mm for depth, 35 degrees for taper, and 0.5 mm for gingival height. The optimum model significantly increased cortical bone density from 1.2 to 1.937 g/cm3 in 2 months, while the original model reached 1.91 g/cm3 in 11 months. The standard deviation of density showed more uniform bone apposition, with the optimum model showing values 2 to 6 times lower than the original over 12 months. The cancellous bone showed a similar trend. In conclusion, the depth and taper have a significant effect on bone remodeling. This optimized model significantly improves bone density uniformity.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] From model validation to biomechanical analysis: In silico study of multirooted root analogue implants using 3D finite element analysis
    Aldesoki, Mostafa
    Keilig, Ludger
    Alhotan, Abdulaziz
    Diab, Al-Hassan
    Elshazly, Tarek M.
    Bourauel, Christoph
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2025, 164
  • [32] Effect of platform switching on peri-implant bone: A 3D finite element analysis
    Aslam, Ayesha
    Hassan, Syed Hammad
    Aslam, Hammad Mudasser
    Khan, Danish Azeem
    JOURNAL OF PROSTHETIC DENTISTRY, 2019, 121 (06) : 935 - 940
  • [33] Advancing 3D Dental Implant Finite Element Analysis: Incorporating Biomimetic Trabecular Bone with Varied Pore Sizes in Voronoi Lattices
    Alemayehu, Dawit Bogale
    Todoh, Masahiro
    Huang, Song-Jeng
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (04)
  • [34] Biomechanical analysis and comparison of 12 dental implant systems using 3D finite element study
    Liang, Rui
    Guo, Weihua
    Qiao, Xiangchen
    Wen, Hailin
    Yu, Mei
    Tang, Wei
    Liu, Lei
    Wei, Yongtao
    Tian, Weidong
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2015, 18 (12) : 1340 - 1348
  • [35] Outcome of Implant Diameter and Length on the Distribution of Stress with Immediate Loaded Implants: A 3D Finite Element Analysis
    Kavitha, G.
    Sonkesriya, Subhash
    Kumar, Anil K.
    Almutairi, Faris Jaser
    Parmar, Pravin M.
    Parihar, Anuj Singh
    Sonkar, Tanu Priya
    JOURNAL OF PHARMACY AND BIOALLIED SCIENCES, 2023, 15 : S1329 - S1331
  • [36] Effect of peri-implantitis associated horizontal bone loss on stress distribution around dental implants - A 3D finite element analysis
    Gupta, Shipra
    Goyal, Parveen
    Jain, Ashish
    Chopra, Priyanka
    MATERIALS TODAY-PROCEEDINGS, 2020, 28 : 1503 - 1509
  • [37] Finite element analysis of bone and implant stresses for customized 3D-printed orthopaedic implants in fracture fixation
    Lina Yan
    Joel Louis Lim
    Jun Wei Lee
    Clement Shi Hao Tia
    Gavin Kane O’Neill
    Desmond Y.R. Chong
    Medical & Biological Engineering & Computing, 2020, 58 : 921 - 931
  • [38] Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis
    Hussein, Mustafa Omran
    JOURNAL OF ADVANCED PROSTHODONTICS, 2013, 5 (03) : 333 - 340
  • [39] Multi-objective optimization of 3D micro-fins using NSGA-II
    Soleimani, Shima
    Eckels, Steven
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 197
  • [40] Multi-objective traffic signal optimization using 3D mesoscopic simulation and evolutionary algorithms
    Mihaita, Adriana Simona
    Dupont, Laurent
    Camargo, Mauricio
    SIMULATION MODELLING PRACTICE AND THEORY, 2018, 86 : 120 - 138